1. CMB 2017 (vol 60 pp. 329)
 Le Fourn, Samuel

Nonvanishing of Central Values of $L$functions of Newforms in $S_2 (\Gamma_0 (dp^2))$ Twisted by Quadratic Characters
We prove that for $d \in \{ 2,3,5,7,13 \}$ and $K$ a quadratic
(or rational) field of discriminant $D$ and Dirichlet character
$\chi$, if a prime $p$ is large enough compared to $D$, there
is a newform $f \in S_2(\Gamma_0(dp^2))$ with sign $(+1)$ with
respect to the AtkinLehner involution $w_{p^2}$ such that $L(f
\otimes \chi,1) \neq 0$. This result is obtained through an estimate
of a weighted sum of twists of $L$functions which generalises
a result of Ellenberg. It relies on the approximate functional
equation for the $L$functions $L(f \otimes \chi, \cdot)$ and
a Petersson trace formula restricted to AtkinLehner eigenspaces.
An application of this nonvanishing theorem will be given in
terms of existence of rank zero quotients of some twisted jacobians,
which generalises a result of Darmon and Merel.
Keywords:nonvanishing of $L$functions of modular forms, Petersson trace formula, rank zero quotients of jacobians Categories:14J15, 11F67 

2. CMB 2007 (vol 50 pp. 234)
 Kuo, Wentang

A Remark on a Modular Analogue of the SatoTate Conjecture
The original SatoTate Conjecture concerns the angle distribution
of the eigenvalues arising from nonCM elliptic curves. In this paper,
we formulate a modular analogue of the SatoTate Conjecture and prove
that the angles arising from nonCM holomorphic Hecke
eigenforms with nontrivial central characters are not distributed
with respect to the SateTate measure
for nonCM elliptic curves. Furthermore, under a reasonable conjecture,
we prove that the expected distribution is uniform.
Keywords:$L$functions, Elliptic curves, SatoTate Categories:11F03, 11F25 
