Abstract. In an attempt to resolve a folklore conjecture of Erdös regarding the non-vanishing at $s = 1$ of the L-series attached to a periodic arithmetical function with period q and values in $\{-1, 1\}$, Livingston conjectured the \mathbb{Q}-linear independence of logarithms of certain algebraic numbers. In this paper, we disprove Livingston's conjecture for composite $q \geq 4$, highlighting that a new approach is required to settle Erdös's conjecture. We also prove that the conjecture is true for prime $q \geq 3$, and indicate that more ingredients will be needed to settle Erdös's conjecture for prime q.