Abstract. We prove that for the linear scalar delay differential equation

$$\dot{x}(t) = -a(t)x(t) + b(t)x(t-1)$$

with non-negative periodic coefficients of period $P > 0$, the stability threshold for the trivial solution is $r := \int_0^P (b(t) - a(t)) \, dt = 0$, assuming that $b(t + 1) - a(t)$ does not change its sign. By constructing a class of explicit examples, we show the counter-intuitive result that in general, $r = 0$ is not a stability threshold.