The thickness of the Cartesian product of two graphs
Yichao Chen and Xuluo Yin

Abstract. The thickness of a graph G is the minimum number of planar subgraphs whose union is G. A t-minimal graph is a graph of thickness t which contains no proper subgraph of thickness t. In this paper, upper and lower bounds are obtained for the thickness, $t(G \square H)$, of the Cartesian product of two graphs G and H, in terms of the thickness $t(G)$ and $t(H)$. Furthermore, the thickness of the Cartesian product of two planar graphs and of a t-minimal graph and a planar graph are determined. By using a new planar decomposition of the complete bipartite graph $K_{4k,4k}$, the thickness of the Cartesian product of two complete bipartite graphs $K_{n,n}$ and $K_{n,n}$ is also given, for $n \neq 4k + 1$.