On the Diameter of Unitary Cayley Graphs of Rings
Huadong Su

Abstract. The unitary Cayley graph of a ring R, denoted $\Gamma(R)$, is the simple graph defined on all elements of R, and where two vertices x and y are adjacent if and only if $x - y$ is a unit in R. The largest distance between all pairs of vertices of a graph G is called the diameter of G, and is denoted by $\text{diam}(G)$. It is proved that for each integer $n \geq 1$, there exists a ring R such that $\text{diam}(\Gamma(R)) = n$. We also show that $\text{diam}(\Gamma(R)) \in \{1, 2, 3, \infty\}$ for a ring R with $R/J(R)$ self-injective and classify all those rings with $\text{diam}(\Gamma(R)) = 1, 2, 3$ and ∞, respectively. This extends [?, Theorem 3.1].