Homological Properties Relative to Injectively Resolving Subcategories
Zenghui Gao

Abstract. Let \mathcal{E} be an injectively resolving subcategory of left R-modules. A left R-module M (resp. right R-module N) is called \mathcal{E}-injective (resp. \mathcal{E}-flat) if $\text{Ext}_R^1(G,M) = 0$ (resp. $\text{Tor}_R^1(N,G) = 0$) for any $G \in \mathcal{E}$. Let \mathcal{E} be a covering subcategory. We prove that a left R-module M is \mathcal{E}-injective if and only if M is a direct sum of an injective left R-module and a reduced \mathcal{E}-injective left R-module. Suppose \mathcal{F} is a preenveloping subcategory of right R-modules such that $\mathcal{E}^+ \subseteq \mathcal{F}$ and $\mathcal{F}^+ \subseteq \mathcal{E}$. It is shown that a finitely presented right R-module M is \mathcal{E}-flat if and only if M is a cokernel of an \mathcal{F}-preenvelope of a right R-module. In addition, we introduce and investigate the \mathcal{E}-injective and \mathcal{E}-flat dimensions of modules and rings. We also introduce \mathcal{E}-(semi)hereditary rings and \mathcal{E}-von Neumann regular rings and characterize them in terms of \mathcal{E}-injective and \mathcal{E}-flat modules.