Abstract. Let ν be a henselian valuation of any rank of a field K and $\bar{\nu}$ be the unique extension of ν to a fixed algebraic closure \bar{K} of K. In 2005, it was studied properties of those pairs (θ, α) of elements of \bar{K} with $[K(\theta):K] > [K(\alpha):K]$ where α is an element of smallest degree over K such that

$$\bar{\nu}(\theta - \alpha) = \sup \{ \bar{\nu}(\theta - \beta) | \beta \in \bar{K}, [K(\beta):K] < [K(\theta):K] \}.$$

Such pairs are referred to as distinguished pairs. We use the concept of liftings of irreducible polynomials to give a different characterization of distinguished pairs.