Abstract. We consider the Finsler space (\bar{M}^3, \bar{F}) obtained by perturbing the Euclidean metric of \mathbb{R}^3 by a rotation. It is the open region of \mathbb{R}^3 bounded by a cylinder with a Randers metric. Using the Busemann-Hausdorff volume form, we obtain the differential equation that characterizes the helicoidal minimal surfaces in \bar{M}^3. We prove that the helicoid is a minimal surface in \bar{M}^3, only if the axis of the helicoid is the axis of the cylinder. Moreover, we prove that, in the Randers space (\bar{M}^3, \bar{F}), the only minimal surfaces in the Bonnet family, with fixed axis $O\bar{x}^3$, are the catenoids and the helicoids.