A problem on edge-magic labelings of cycles
S. C. López, F. A. Muntaner-Batle, and M. Rius-Font

Abstract. Kotzig and Rosa defined in 1970 the concept of edge-magic labelings as follows: let G be a simple (p, q)-graph (that is, a graph of order p and size q without loops or multiple edges). A bijective function $f : V(G) \cup E(G) \rightarrow \{1, 2, \ldots, p + q\}$ is an edge-magic labeling of G if $f(u) + f(uv) + f(v) = k$, for all $uv \in E(G)$. A graph that admits an edge-magic labeling is called an edge-magic graph, and k is called the magic sum of the labeling. An old conjecture of Godbold and Slater sets that all possible theoretical magic sums are attained for each cycle of order $n \geq 7$. Motivated by this conjecture, we prove that for all $n_0 \in \mathbb{N}$, there exists $n \in \mathbb{N}$, such that the cycle C_n admits at least n_0 edge-magic labelings with at least n_0 mutually distinct magic sums. We do this by providing a lower bound for the number of magic sums of the cycle C_n, depending on the sum of the exponents of the odd primes appearing in the prime factorization of n.