Abstract. We prove the following result of the second and third authors: Any homogeneous, metric ANR-continuum is a V^*_G-continuum provided $\dim G X = n \geq 1$ and $\check{H}^n(X; G) \neq 0$, where G is a principal ideal domain. This implies that any homogeneous n-dimensional metric ANR-continuum is a V^n-continuum in the sense of Alexandroff. We also prove that any finite-dimensional homogeneous metric continuum X, satisfying $\check{H}^n(X; G) \neq 0$ for some group G and $n \geq 1$, cannot be separated by a compactum K with $\check{H}^{n-1}(K; G) = 0$ and $\dim G K \leq n - 1$. This provides a partial answer to a question of Kallipoliti-Papasoglu whether any two-dimensional homogeneous Peano continuum cannot be separated by arcs.