The \(f \)-Chromatic Index of a Graph Whose \(f \)-Core has Maximum Degree 2

S. Akbari, M. Chavooshi, M. Ghanbari, and S. Zare

Abstract. Let \(G \) be a graph. The minimum number of colors needed to color the edges of \(G \) is called the chromatic index of \(G \) and is denoted by \(\chi'(G) \). It is well-known that \(\Delta(G) \leq \chi'(G) \leq \Delta(G) + 1 \), for any graph \(G \), where \(\Delta(G) \) denotes the maximum degree of \(G \). A graph \(G \) is said to be Class 1 if \(\chi'(G) = \Delta(G) \) and Class 2 if \(\chi'(G) = \Delta(G) + 1 \). Also, \(G_\Delta \) is the induced subgraph on all vertices of degree \(\Delta(G) \). Let \(f : V(G) \rightarrow \mathbb{N} \) be a function. An \(f \)-coloring of a graph \(G \) is a coloring of the edges of \(E(G) \) such that each color appears at each vertex \(v \in V(G) \) at most \(f(v) \) times. The minimum number of colors needed to \(f \)-color \(G \) is called the \(f \)-chromatic index of \(G \) and is denoted by \(\chi_f'(G) \). It was shown that for every graph \(G \), \(\Delta_f(G) \leq \chi_f'(G) \leq \Delta_f(G) + 1 \), where \(\Delta_f(G) = \max_{v \in V(G)} \left\lceil \frac{d_G(v)}{f(v)} \right\rceil \). A graph \(G \) is said to be \(f \)-Class 1 if \(\chi_f'(G) = \Delta_f(G) \), and \(f \)-Class 2, otherwise. Also, \(G_{\Delta_f} \) is the induced subgraph of \(G \) on \(\{v \in V(G) : \frac{d_G(v)}{f(v)} = \Delta_f(G)\} \). Hilton and Zhao showed that if \(G_\Delta \) has maximum degree two and \(G \) is Class 2, then \(G \) is critical, \(G_\Delta \) is a disjoint union of cycles and \(\delta(G) = \Delta(G) - 1 \), where \(\delta(G) \) denotes the minimum degree of \(G \), respectively. In this paper, we generalize this theorem to \(f \)-coloring of graphs. Also, we determine the \(f \)-chromatic index of a connected graph \(G \) with \(|G_{\Delta_f}| \leq 4 \).