A Lower Bound for the End-to-End Distance of Self-Avoiding Walk
Neal Madras

Abstract. For an N-step self-avoiding walk on the hypercubic lattice \mathbb{Z}^d, we prove that the mean-square end-to-end distance is at least $N^{4/(3d)}$ times a constant. This implies that the associated critical exponent ν is at least $2/(3d)$, assuming that ν exists.