A Cohomological Property of π-invariant Elements
M. Filali and M. Sangani Monfared

Abstract. Let A be a Banach algebra and $\pi : A \to \mathcal{L}(H)$ be a continuous representation of A on a separable Hilbert space H with $\dim H = m$. Let π_{ij} be the coordinate functions of π with respect to an orthonormal basis and suppose that for each $1 \leq j \leq m$, $C_j = \sum_{i=1}^{m} \|\pi_{ij}\|_{A^*} < \infty$ and $\sup_j C_j < \infty$. Under these conditions, we call an element $\Phi \in l^\infty(m, A^{**})$ left π-invariant if $a \cdot \Phi = ^t\pi(a)\Phi$ for all $a \in A$. In this paper we prove a link between the existence of left π-invariant elements and the vanishing of certain Hochschild cohomology groups of A. Our results extend an earlier result by Lau on F-algebras and recent results of Kaniuth–Lau–Pym and the second named author in the special case that $\pi : A \to \mathbb{C}$ is a non-zero character on A.