Atomic Decomposition and Boundedness of Operators on Weighted Hardy Spaces

Yongsheng Han, Ming-Yi Lee, and Chin-Cheng Lin

Abstract. In this article, we establish a new atomic decomposition for \(f \in L^2_w \cap H^p_w \), where the decomposition converges in \(L^2_w \)-norm rather than in the distribution sense. As applications of this decomposition, assuming that \(T \) is a linear operator bounded on \(L^p_w \) and \(0 < p \leq 1 \), we obtain (i) if \(T \) is uniformly bounded in \(L^p_w \)-norm for all \(w \)-\(p \)-atoms, then \(T \) can be extended to be bounded from \(H^p_w \) to \(L^p_w \); (ii) if \(T \) is uniformly bounded in \(H^p_w \)-norm for all \(w \)-\(p \)-atoms, then \(T \) can be extended to be bounded on \(H^p_w \); (iii) if \(T \) is bounded on \(H^p_w \), then \(T \) can be extended to be bounded from \(H^p_w \) to \(L^p_w \).

Department of Mathematics, Auburn University, Auburn, AL 36849-5310, U.S.A.
E-mail: hanyong@mail.auburn.edu

Department of Mathematics, National Central University, Chung-Li, Taiwan 320, Republic of China
E-mail: mylee@math.ncu.edu.tw clin@math.ncu.edu.tw

Received by the editors March 24, 2009.
Published electronically April 15, 2011.

Research by the first author was partially supported by NCTS in Taiwan, and this paper was written while he was visiting National Center for Theoretical Sciences. Research by the second and third authors was supported by the National Science Council, Republic of China under Grant #NSC 97-2115-M-008-005 and Grant #NSC 97-2115-M-008-021-MY3, respectively.

AMS subject classification: 42B25, 42B30.
Keywords: \(A_p \) weights, atomic decomposition, Calderón reproducing formula, weighted Hardy spaces.