Involution Fixing $F^n \cup \{\text{Indecomposable}\}$

Pedro L. Q. Pergher

Abstract. Let M^m be an m-dimensional, closed and smooth manifold, equipped with a smooth involution $T : M^m \to M^m$ whose fixed point set has the form $F^n \cup F^j$, where F^n and F^j are submanifolds with dimensions n and j, F^j is indecomposable and $n > j$. Write $n - j = 2q$, where $q \geq 1$ is odd and $p \geq 0$, and set $m(n - j) = 2n + p - q + 1$ if $p \leq q + 1$ and $m(n - j) = 2n + 2^{p+q}$ if $p \geq q$. In this paper we show that $m \leq m(n - j) + 2j + 1$. Further, we show that this bound is almost best possible, by exhibiting examples $(M^{m(n-j)2j}, T)$ where the fixed point set of T has the form $F^n \cup F^j$ described above, for every $2 \leq j < n$ and j not of the form $2t - 1$ (for $j = 0$ and 2, it has been previously shown that $m(n - j) + 2j$ is the best possible bound). The existence of these bounds is guaranteed by the famous $5/2$-theorem of J. Boardman, which establishes that under the above hypotheses $m \leq \frac{5}{2}n$.

Departamento de Matemática, Universidade Federal de São Carlos, Caixa Postal 676, São Carlos, SP 13565-905, Brazil

e-mail: pergher@dm.ufscar.br

Received by the editors January 15, 2009; revised May 19, 2009.
Published electronically March 24, 2011.

The author was partially supported by CNPq and FAPESP

AMS subject classification: 57R85.

Keywords: involution, projective space bundle, indecomposable manifold, splitting principle, Stiefel–Whitney class, characteristic number.