An Extension of Craig’s Family of Lattices

J. Carmelo Interlando, André Luiz Flores, and Trajano Pires da Nóbrega Neto

Abstract. Let \(p \) be a prime, and let \(\zeta_p \) be a primitive \(p \)-th root of unity. The lattices in Craig’s family are \((p − 1)\)-dimensional and are geometrical representations of the integral \(\mathbb{Z}[\zeta_p] \)-ideals \(\langle 1 − \zeta_p^i \rangle \), where \(i \) is a positive integer. This lattice construction technique is a powerful one. Indeed, in dimensions \(p − 1 \) where \(149 \leq p \leq 3001 \), Craig’s lattices are the densest packings known. Motivated by this, we construct \((p − 1)(q − 1)\)-dimensional lattices from the integral \(\mathbb{Z}[\zeta_{pq}] \)-ideals \(\langle 1 − \zeta_p^i \rangle \langle 1 − \zeta_q^j \rangle \), where \(p \) and \(q \) are distinct primes and \(i \) and \(j \) are positive integers. In terms of sphere-packing density, the new lattices and those in Craig’s family have the same asymptotic behavior. In conclusion, Craig’s family is greatly extended while preserving its sphere-packing properties.