On the Dichotomy of the Evolution Families: A Discrete-Argument Approach

Ciprian Preda and Ciprian Sipos

Abstract. We establish a discrete-time criteria guaranteeing the existence of an exponential dichotomy in the continuous-time behavior of an abstract evolution family. We prove that an evolution family $\mathcal{U} = \{U(t,s)\}_{t \geq s \geq 0}$ acting on a Banach space X is uniformly exponentially dichotomic (with respect to its continuous-time behavior) if and only if the corresponding difference equation with the inhomogeneous term from a vector-valued Orlicz sequence space $l^\Phi(N,X)$ admits a solution in the same $l^\Phi(N,X)$. The technique of proof effectively eliminates the continuity hypothesis on the evolution family (i.e., we do not assume that $U(\cdot,s)x$ or $U(t,\cdot)x$ is continuous on $[s, \infty)$, and respectively $[0,t]$). Thus, some known results given by Coffman and Schaffer, Perron, and Ta Li are extended.

(C. Preda) Department of Mathematics, University of California, Los Angeles, CA 90095, U.S.A.
Current address: West University of Timișoara, Timișoara, 300223, Romania
e-mail: ciprian.preda@feaa.ut.ro

(C. Sipos) Department of Economics, West University of Timișoara, Timișoara 300115, Romania
e-mail: ciprian.sipos@feaa.uvt.ro

Received by the editors August 24, 2008; revised March 9, 2009.
Published electronically December 31, 2010.
AMS subject classification: 34D05, 47D06, 93D20.
Keywords: evolution families, exponential dichotomy, Orlicz sequence spaces, admissibility.