Measurements and $G_δ$-Subsets of Domains

Harold Bennett and David Lutzer

Abstract. In this paper we study domains, Scott domains, and the existence of measurements. We use a space created by D. K. Burke to show that there is a Scott domain P for which $\text{max}(P)$ is a $G_δ$-subset of P and yet no measurement μ on P has $\ker(\mu) = \text{max}(P)$. We also correct a mistake in the literature asserting that $[0, \omega_1)$ is a space of this type. We show that if P is a Scott domain and $X \subseteq \text{max}(P)$ is a $G_δ$-subset of P, then X has a $G_δ$-diagonal and is weakly developable. We show that if $X \subseteq \text{max}(P)$ is a $G_δ$-subset of P, where P is a domain but perhaps not a Scott domain, then X is domain-representable, first-countable, and is the union of dense, completely metrizable subspaces. We also show that there is a domain P such that $\text{max}(P)$ is the usual space of countable ordinals and is a $G_δ$-subset of P in the Scott topology. Finally we show that the kernel of a measurement on a Scott domain can consistently be a normal, separable, non-metrizable Moore space.

Mathematics Department, Texas Tech University, Lubbock, TX, 79409
e-mail: harold.bennett@ttu.edu
Mathematics Department, College of William and Mary, Williamsburg, VA, 23187
e-mail: lutzer@math.wm.edu

Received by the editors July 10, 2008.
Published electronically December 31, 2010.
Keywords: domain-representable, Scott-domain-representable, measurement, Burke’s space, developable spaces, weakly developable spaces, $G_δ$-diagonal, Čech-complete space, Moore space, ω_1, weakly developable space, sharp base, AF-complete.