Two Volume Product Inequalities and Their Applications

Dedicated to Ted Bisztriczky, on his sixtieth birthday.

Alina Stancu

Abstract. Let $K \subset \mathbb{R}^{n+1}$ be a convex body of class C^2 with everywhere positive Gauss curvature. We show that there exists a positive number $\delta(K)$ such that for any $\delta \in (0, \delta(K))$ we have $\text{Vol}(K_\delta) \cdot \text{Vol}((K_\delta)^*) \geq \text{Vol}(K) \cdot \text{Vol}(K^*) \geq \text{Vol}(K^\delta) \cdot \text{Vol}((K^\delta)^*)$, where K_δ, K^δ and K^* stand for the convex floating body, the illumination body, and the polar of K, respectively. We derive a few consequences of these inequalities.

Department of Mathematics and Statistics, Concordia University, Montréal, QC H3G 1M8

e-mail: stancu@mathstat.concordia.ca

Received by the editors November 29, 2007; revised May 22, 2008.
The author was partially supported by an NSERC grant and an FRDP grant.
AMS subject classification: Primary: 52A40; secondary: 52A38, 52A20.
Keywords: affine invariants, convex floating bodies, illumination bodies.
© Canadian Mathematical Society 2009.