Transversals with Residue in Moderately Overlapping $T(k)$-Families of Translates

Dedicated to Ted Bisztriczky, on his sixtieth birthday.

Aladár Heppes

Abstract. Let K denote an oval, a centrally symmetric compact convex domain with non-empty interior. A family of translates of K is said to have property $T(k)$ if for every subset of at most k translates there exists a common line transversal intersecting all of them. The integer k is the stabbing level of the family. Two translates $K_i = K + c_i$ and $K_j = K + c_j$ are said to be σ-disjoint if $\sigma K + c_i$ and $\sigma K + c_j$ are disjoint. A recent Helly-type result claims that for every $\sigma > 0$ there exists an integer $k(\sigma)$ such that if a family of σ-disjoint unit diameter discs has property $T(k)|k \geq k(\sigma)$, then there exists a straight line meeting all members of the family. In the first part of the paper we give the extension of this theorem to translates of an oval K. The asymptotic behavior of $k(\sigma)$ for $\sigma \rightarrow 0$ is considered as well.

Katchalski and Lewis proved the existence of a constant r such that for every pairwise disjoint family of translates of an oval K with property $T(3)$ a straight line can be found meeting all but at most r members of the family. In the second part of the paper σ-disjoint families of translates of K are considered and the relation of σ and the residue r is investigated. The asymptotic behavior of $r(\sigma)$ for $\sigma \rightarrow 0$ is also discussed.

Rényi Institute of the Hungarian Academy of Sciences, Réaltanoda u. 13-15, H-1053 Budapest, Hungary
e-mail: aheppes@renyi.hu