On Functions Whose Graph is a Hamel Basis, II

To the memory of my Mother.

Krzysztof Plotka

Abstract. We say that a function \(h : \mathbb{R} \to \mathbb{R} \) is a Hamel function (\(h \in HF \)) if \(h \), considered as a subset of \(\mathbb{R}^2 \), is a Hamel basis for \(\mathbb{R}^2 \). We show that \(A(HF) \geq \omega \), i.e., for every finite \(F \subseteq \mathbb{R}^\mathbb{R} \) there exists \(f \in \mathbb{R}^\mathbb{R} \) such that \(f + F \subseteq HF \). From the previous work of the author it then follows that \(A(HF) = \omega \).

Department of Mathematics, University of Scranton, Scranton, PA 18510, USA
e-mail: Krzysztof.Plotka@scranton.edu

Received by the editors September 26, 2006; revised January 5, 2007.
The work was supported in part by the intersession research grant from the University of Scranton.
AMS subject classification: Primary 26A21; secondary 54C40, 15A03, 54C30.
Keywords: Hamel basis, additive, and Hamel functions.
© Canadian Mathematical Society 2009.