Dunford–Pettis Properties and Spaces of Operators

Ioana Ghenciu and Paul Lewis

Abstract. J. Elton used an application of Ramsey theory to show that if X is an infinite dimensional Banach space, then c_0 embeds in X, ℓ_1 embeds in X, or there is a subspace of X that fails to have the Dunford–Pettis property. Bessaga and Pelczyński showed that if c_0 embeds in X^*, then ℓ_∞ embeds in X^*. Emmanuele and John showed that if c_0 embeds in $K(X,Y)$, then $K(X,Y)$ is not complemented in $L(X,Y)$. Classical results from Schauder basis theory are used in a study of Dunford–Pettis sets and strong Dunford–Pettis sets to extend each of the preceding theorems. The space $L_{w^*}(X^*,Y)$ of w^*-w continuous operators is also studied.

Mathematics Department, University of Wisconsin-River Falls, River Falls, WI 54022-5001, USA
e-mail: ioana.ghenciu@uwrf.edu

Department of Mathematics, University of North Texas, Denton, TX 76203-1430, USA
e-mail: lewis@unt.edu

Received by the editors August 19, 2004.
AMS subject classification: Primary: 46B20; secondary: 46B28.
Keywords: Dunford–Pettis property, Dunford–Pettis set, basic sequence, complemented spaces of operators.
© Canadian Mathematical Society 2009.