Monotonicity Properties of the Hurwitz Zeta Function

Horst Alzer

Abstract. Let
\[\zeta(s, x) = \sum_{n=0}^{\infty} \frac{1}{(n+x)^s} \quad (s > 1, x > 0) \]
be the Hurwitz zeta function and let
\[Q(x) = Q(x; \alpha, \beta; a, b) = \frac{(\zeta(\alpha, x))^a}{(\zeta(\beta, x))^b}, \]
where \(\alpha, \beta > 1 \) and \(a, b > 0 \) are real numbers. We prove: (i) The function \(Q \) is decreasing on \((0, \infty)\) if and only if \(\alpha a - \beta b \geq \max(a - b, 0) \). (ii) \(Q \) is increasing on \((0, \infty)\) if and only if \(\alpha a - \beta b \leq \min(a - b, 0) \). An application of part (i) reveals that for all \(x > 0 \) the function \(s \mapsto [(s - 1)\zeta(s, x)]^{1/(s-1)} \) is decreasing on \((1, \infty)\). This settles a conjecture of Bastien and Rogalski.