Group Gradings on Matrix Algebras

Dedicated to the 60th birthday of Robert Moody

Yu. A. Bahturin and M. V. Zaicev

Abstract. Let Φ be an algebraically closed field of characteristic zero, G a finite, not necessarily abelian, group. Given a G-grading on the full matrix algebra $A = M_n(\Phi)$, we decompose A as the tensor product of graded subalgebras $A = B \otimes C$, $B \cong M_p(\Phi)$ being a graded division algebra, while the grading of $C \cong M_q(\Phi)$ is determined by that of the vector space Φ^n. Now the grading of A is recovered from those of A and B using a canonical “induction” procedure.