Coordinatization Theorems
For Graded Algebras

Dedicated to Robert Moody on the occasion of his 60th birthday

Bruce Allison and Oleg Smirnov

Abstract. In this paper we study simple associative algebras with finite \mathbb{Z}-gradings. This is done using a simple algebra F_g that has been constructed in Morita theory from a bilinear form $g: U \times V \to A$ over a simple algebra A. We show that finite \mathbb{Z}-gradings on F_g are in one to one correspondence with certain decompositions of the pair (U, V). We also show that any simple algebra R with finite \mathbb{Z}-grading is graded isomorphic to F_g for some bilinear from $g: U \times V \to A$, where the grading on F_g is determined by a decomposition of (U, V) and the coordinate algebra A is chosen as a simple ideal of the zero component R_0 of R. In order to prove these results we first prove similar results for simple algebras with Peirce gradings.