Abstract. Let \mathbb{P}^n be the n-dimensional projective space over some algebraically closed field k of characteristic 0. For an integer $t \geq 3$ consider the invertible sheaf $\mathcal{O}(t)$ on \mathbb{P}^n (Serre twist of the structure sheaf). Let $N = \binom{t+n}{n}$, the dimension of the space of global sections of $\mathcal{O}(t)$, and let k be an integer satisfying $0 \leq k \leq N - (2n + 2)$. Let P_1, \ldots, P_k be general points on \mathbb{P}^n and let $\pi: X \to \mathbb{P}^n$ be the blowing-up of \mathbb{P}^n at those points. Let $E_i = \pi^{-1}(P_i)$ with $1 \leq i \leq k$ be the exceptional divisor. Then $M = \pi^*(\mathcal{O}(t)) \otimes \mathcal{O}_X(-E_1 - \cdots - E_k)$ is a very ample invertible sheaf on X.

Received by the editors January 24, 2001.
AMS subject classification: 14E25, 14N05, 14N15.
Keywords: blowing-up, projective space, very ample linear system, embeddings, Veronese map.