ON PERMANENTAL IDENTITIES
OF SYMMETRIC AND SKEW-SYMMETRIC MATRICES
IN CHARACTERISTIC \(p \)

ANGELA VALENTI

ABSTRACT. Let \(M_n(F) \) be the algebra of \(n \times n \) matrices over a field \(F \) of characteristic \(p > 2 \) and let \(* \) be an involution on \(M_n(F) \). If \(s_1, \ldots, s_r \) are symmetric variables we determine the smallest \(r \) such that the polynomial

\[
P_r(s_1, \ldots, s_r) = \sum_{\sigma \in \mathcal{S}_r} s_{\sigma(1)} \cdots s_{\sigma(r)}
\]

is a \(*\)-polynomial identity of \(M_n(F) \) under either the symplectic or the transpose involution. We also prove an analogous result for the polynomial

\[
C_r(k_1, \ldots, k_r; k'_1, \ldots, k'_r) = \sum_{\sigma \in \mathcal{S}_r} k_{\sigma(1)} k'_{\sigma(1)} \cdots k_{\sigma(r)} k'_{\sigma(r)}
\]

where \(k_1, \ldots, k_r, k'_1, \ldots, k'_r \) are skew variables under the transpose involution.