QUANTUM DEFORMATIONS
OF SIMPLE LIE ALGEBRAS

MURRAY BREMNER

ABSTRACT. It is shown that every simple complex Lie algebra \(\mathfrak{g} \) admits a 1-parameter family \(\mathfrak{g}_q \) of deformations outside the category of Lie algebras. These deformations are derived from a tensor product decomposition for \(U_q(\mathfrak{g}) \)-modules; here \(U_q(\mathfrak{g}) \) is the quantized enveloping algebra of \(\mathfrak{g} \). From this it follows that the multiplication on \(\mathfrak{g}_q \) is \(U_q(\mathfrak{g}) \)-invariant. In the special case \(\mathfrak{g} = \mathfrak{sl}(2) \), the structure constants for the deformation \(\mathfrak{sl}(2)_q \) are obtained from the quantum Clebsch-Gordan formula applied to \(V(2)_q \otimes V(2)_q \); here \(V(2)_q \) is the simple 3-dimensional \(U_q(\mathfrak{sl}(2)) \)-module of highest weight \(q^2 \).

The author thanks the Natural Sciences and Engineering Research Council of Canada for financial support through grant OGP0153128, and J. Szmigielski for reference [LS].

Received by the editors April 2, 1996.

AMS subject classification: Primary: 17B37; Secondary: 17A01.