In this paper, we give several pictorial fractal
representations of the ample or Kähler cone for surfaces in a
certain class of $K3$ surfaces. The class includes surfaces
described by smooth $(2,2,2)$ forms in ${\mathbb P^1\times\mathbb P^1\times \mathbb P^1}$ defined over a
sufficiently large number field $K$ that have a line parallel to
one of the axes and have Picard number four. We relate the
Hausdorff dimension of this fractal to the asymptotic growth of
orbits of curves under the action of the surface's group of
automorphisms. We experimentally estimate the Hausdorff dimension
of the fractal to be $1.296 \pm .010$.
Parallel to the first two authors' earlier classification of separable, unita
one-parameter, continuous fields of Kirchberg algebras with torsion free
$\mathrm{K}$-groups supported in one dimension, one-parameter, separable, uni
continuous fields of AF-algebras are classified by their ordered
$\mathrm{K}_0$-sheaves. Effros-Handelman-Shen type theorems are pr separable
unital one-parameter continuous fields of AF-algebras and Kirchberg algebras.
In this paper we study the existence and uniqueness of
best proximity points of cyclic contractions as well as the convergence
of iterates to such proximity points. We take two different approaches,
each one leading to different results that complete, if not improve,
other similar results in the theory. Results in this paper stand for Banach
spaces, geodesic metric spaces and metric spaces. We also include an appendix
on CAT$(0)$ spaces where we study the particular behavior of these spaces
regarding the problems we are concerned with.
In the paper, we introduce a new concept,
topological orbit dimension of an $n$-tuple of elements in a unital
C$^{\ast}$-algebra. Using this concept, we conclude that Voiculescu's
topological free
entropy dimension of every finite family of self-adjoint generators of a
nuclear C$^{\ast}$-algebra is less than or equal to $1$. We also show that the
Voiculescu's topological free entropy dimension is additive in the full free
product of some unital C$^{\ast}$-algebras. We show that the unital full free
product of Blackadar and Kirchberg's unital MF
algebras is also an MF algebra. As an application, we obtain that
$\mathop{\textrm{Ext}}(C_{r}^{\ast}(F_{2})\ast_{\mathbb{C}}C_{r}^{\ast}(F_{2}))$ is not a group.
We calculate reducibility for the representations of
metaplectic groups induced from cuspidal representations of
maximal parabolic subgroups via theta correspondence, in terms of the
analogous representations of the odd orthogonal groups. We also
describe the lifts of all relevant subquotients.
In this note we search the parameter space of Horrocks-Mumford quintic
threefolds and locate a Calabi-Yau threefold that is modular, in the
sense that the $L$-function of its middle-dimensional cohomology is
associated with a classical modular form of weight 4 and level 55.
Let $S_{k}(\Gamma)$ be the space of holomorphic cusp forms of even
integral weight $k$ for the full modular group.
Let $\lambda_f(n)$ and $\lambda_g(n)$ be the $n$-th normalized Fourier coefficients of
two holomorphic Hecke eigencuspforms $f(z), g(z) \in S_{k}(\Gamma)$, respectively.
In this paper we are able to show the following results about higher
moments of Fourier coefficients of holomorphic cusp forms.
(i) For any $\varepsilon>0$, we have
\begin{equation*}
\sum_{n\leq x}\lambda_f^5(n) \ll_{f,\varepsilon}x^{\frac{15}{16}+\varepsilon}
\quad\text{and}\quad\sum_{n\leq x}\lambda_f^7(n) \ll_{f,\varepsilon}x^{\frac{63}{64}+\varepsilon}.
\end{equation*}
(ii) If $\operatorname{sym}^3\pi_f \ncong \operatorname{sym}^3\pi_g$, then for any $\varepsilon>0$, we have
\begin{equation*}
\sum_{n \leq x}\lambda_f^3(n)\lambda_g^3(n)\ll_{f,\varepsilon}x^{\frac{31}{32}+\varepsilon};
\end{equation*}
If $\operatorname{sym}^2\pi_f \ncong \operatorname{sym}^2\pi_g$, then for any $\varepsilon>0$, we have
\[
\sum_{n \leq x}\lambda_f^4(n)\lambda_g^2(n)=cx\log x+c'x+O_{f,\varepsilon}\bigl(x^{\frac{31}{32}+\varepsilon}\bigr);
\]
If $\operatorname{sym}^2\pi_f \ncong \operatorname{sym}^2\pi_g$ and $\operatorname{sym}^4\pi_f \ncong \operatorname{sym}^4\pi_g$, then for any $\varepsilon>0$, we have
\[
\sum_{n \leq x}\lambda_f^4(n)\lambda_g^4(n)=xP(\log x)+O_{f,\varepsilon}\bigl(x^{\frac{127}{128}+\varepsilon}\bigr),
\]
where $P(x)$ is a polynomial of degree $3$.
We set up a framework for computing the spectral dimension of a class of one-dimensional
self-similar measures that are defined by iterated function systems
with overlaps and satisfy a family of second-order self-similar
identities. As applications of our result we obtain the spectral dimension
of important measures such as the infinite Bernoulli convolution
associated with the golden ratio and convolutions of Cantor-type measures.
The main novelty of our result is that the iterated function systems
we consider are not post-critically finite and do not satisfy the
well-known open set condition.
A theory of higher rank multiresolution analysis is given in the
setting of abelian multiscalings. This theory enables the
construction, from a higher rank MRA, of finite wavelet sets
whose multidilations have translates forming an orthonormal basis
in $L^2(\mathbb R^d)$. While tensor products of uniscaled MRAs provide
simple examples we construct many nonseparable higher rank
wavelets. In particular we construct Latin square
wavelets as rank~$2$ variants of Haar wavelets. Also we construct
nonseparable scaling functions for rank $2$ variants of Meyer
wavelet scaling functions, and we construct the associated
nonseparable wavelets with compactly supported Fourier transforms.
On the other hand we show that compactly supported scaling
functions for biscaled MRAs are necessarily separable.