Canadian Mathematical Society
Canadian Mathematical Society
  location:  Publicationsjournals
Search results

Search: MSC category 57M25 ( Knots and links in $S^3$ {For higher dimensions, see 57Q45} )

  Expand all        Collapse all Results 1 - 11 of 11

1. CJM Online first

Conway, Anthony
An explicit computation of the Blanchfield pairing for arbitrary links
Given a link $L$, the Blanchfield pairing $\operatorname{Bl}(L)$ is a pairing which is defined on the torsion submodule of the Alexander module of $L$. In some particular cases, namely if $L$ is a boundary link or if the Alexander module of $L$ is torsion, $\operatorname{Bl}(L)$ can be computed explicitly; however no formula is known in general. In this article, we compute the Blanchfield pairing of any link, generalizing the aforementioned results. As a corollary, we obtain a new proof that the Blanchfield pairing is hermitian. Finally, we also obtain short proofs of several properties of $\operatorname{Bl}(L)$.

Keywords:link, Blanchfield pairing, C-complex, Alexander module

2. CJM 2016 (vol 69 pp. 1201)

Abe, Tetsuya; Tagami, Keiji
Characterization of Positive Links and the $s$-invariant for Links
We characterize positive links in terms of strong quasipositivity, homogeneity and the value of Rasmussen and Beliakova-Wehrli's $s$-invariant. We also study almost positive links, in particular, determine the $s$-invariants of almost positive links. This result suggests that all almost positive links might be strongly quasipositive. On the other hand, it implies that almost positive links are never homogeneous links.

Keywords:knot, $s$-invariant, positive link, almost positive link
Categories:57M25, 57M27

3. CJM 2016 (vol 68 pp. 1201)

Banks, Jessica; Rathbun, Matt
Monodromy Action on Unknotting Tunnels in Fiber Surfaces
In \cite{RatTOFL}, the second author showed that a tunnel of a tunnel number one, fibered link in $S^3$ can be isotoped to lie as a properly embedded arc in the fiber surface of the link. In this paper, we observe that this is true for fibered links in any 3-manifold, we analyze how the arc behaves under the monodromy action, and we show that the tunnel arc is nearly clean, with the possible exception of twisting around the boundary of the fiber.

Keywords:fibered, monodromy, tunnel, clean

4. CJM 2015 (vol 68 pp. 3)

Boden, Hans Ulysses; Curtis, Cynthia L
The SL$(2, C)$ Casson Invariant for Knots and the $\hat{A}$-polynomial
In this paper, we extend the definition of the ${SL(2, {\mathbb C})}$ Casson invariant to arbitrary knots $K$ in integral homology 3-spheres and relate it to the $m$-degree of the $\widehat{A}$-polynomial of $K$. We prove a product formula for the $\widehat{A}$-polynomial of the connected sum $K_1 \# K_2$ of two knots in $S^3$ and deduce additivity of ${SL(2, {\mathbb C})}$ Casson knot invariant under connected sum for a large class of knots in $S^3$. We also present an example of a nontrivial knot $K$ in $S^3$ with trivial $\widehat{A}$-polynomial and trivial ${SL(2, {\mathbb C})}$ Casson knot invariant, showing that neither of these invariants detect the unknot.

Keywords:Knots, 3-manifolds, character variety, Casson invariant, $A$-polynomial
Categories:57M27, 57M25, 57M05

5. CJM 2013 (vol 66 pp. 141)

Caillat-Gibert, Shanti; Matignon, Daniel
Existence of Taut Foliations on Seifert Fibered Homology $3$-spheres
This paper concerns the problem of existence of taut foliations among $3$-manifolds. Since the contribution of David Gabai, we know that closed $3$-manifolds with non-trivial second homology group admit a taut foliation. The essential part of this paper focuses on Seifert fibered homology $3$-spheres. The result is quite different if they are integral or rational but non-integral homology $3$-spheres. Concerning integral homology $3$-spheres, we can see that all but the $3$-sphere and the Poincaré $3$-sphere admit a taut foliation. Concerning non-integral homology $3$-spheres, we prove there are infinitely many which admit a taut foliation, and infinitely many without taut foliation. Moreover, we show that the geometries do not determine the existence of taut foliations on non-integral Seifert fibered homology $3$-spheres.

Keywords:homology 3-spheres, taut foliation, Seifert-fibered 3-manifolds
Categories:57M25, 57M50, 57N10, 57M15

6. CJM 2011 (vol 64 pp. 102)

Ishii, Atsushi; Iwakiri, Masahide
Quandle Cocycle Invariants for Spatial Graphs and Knotted Handlebodies
We introduce a flow of a spatial graph and see how invariants for spatial graphs and handlebody-links are derived from those for flowed spatial graphs. We define a new quandle (co)homology by introducing a subcomplex of the rack chain complex. Then we define quandle colorings and quandle cocycle invariants for spatial graphs and handlebody-links.

Keywords:quandle cocycle invariant, knotted handlebody, spatial graph
Categories:57M27, 57M15, 57M25

7. CJM 2008 (vol 60 pp. 1240)

Beliakova, Anna; Wehrli, Stephan
Categorification of the Colored Jones Polynomial and Rasmussen Invariant of Links
We define a family of formal Khovanov brackets of a colored link depending on two parameters. The isomorphism classes of these brackets are invariants of framed colored links. The Bar-Natan functors applied to these brackets produce Khovanov and Lee homology theories categorifying the colored Jones polynomial. Further, we study conditions under which framed colored link cobordisms induce chain transformations between our formal brackets. We conjecture that for special choice of parameters, Khovanov and Lee homology theories of colored links are functorial (up to sign). Finally, we extend the Rasmussen invariant to links and give examples where this invariant is a stronger obstruction to sliceness than the multivariable Levine--Tristram signature.

Keywords:Khovanov homology, colored Jones polynomial, slice genus, movie moves, framed cobordism
Categories:57M25, 57M27, 18G60

8. CJM 2007 (vol 59 pp. 418)

Stoimenow, A.
On Cabled Knots and Vassiliev Invariants (Not) Contained in Knot Polynomials
It is known that the Brandt--Lickorish--Millett--Ho polynomial $Q$ contains Casson's knot invariant. Whether there are (essentially) other Vassiliev knot invariants obtainable from $Q$ is an open problem. We show that this is not so up to degree $9$. We also give the (apparently) first examples of knots not distinguished by 2-cable HOMFLY polynomials which are not mutants. Our calculations provide evidence of a negative answer to the question whether Vassiliev knot invariants of degree $d \le 10$ are determined by the HOMFLY and Kauffman polynomials and their 2-cables, and for the existence of algebras of such Vassiliev invariants not isomorphic to the algebras of their weight systems.

Categories:57M25, 57M27, 20F36, 57M50

9. CJM 2004 (vol 56 pp. 1022)

Matignon, D.; Sayari, N.
Non-Orientable Surfaces and Dehn Surgeries
Let $K$ be a knot in $S^3$. This paper is devoted to Dehn surgeries which create $3$-manifolds containing a closed non-orientable surface $\ch S$. We look at the slope ${p}/{q}$ of the surgery, the Euler characteristic $\chi(\ch S)$ of the surface and the intersection number $s$ between $\ch S$ and the core of the Dehn surgery. We prove that if $\chi(\hat S) \geq 15 - 3q$, then $s=1$. Furthermore, if $s=1$ then $q\leq 4-3\chi(\ch S)$ or $K$ is cabled and $q\leq 8-5\chi(\ch S)$. As consequence, if $K$ is hyperbolic and $\chi(\ch S)=-1$, then $q\leq 7$.

Keywords:Non-orientable surface, Dehn surgery, Intersection graphs
Categories:57M25, 57N10, 57M15

10. CJM 2000 (vol 52 pp. 293)

Collin, Olivier
Floer Homology for Knots and $\SU(2)$-Representations for Knot Complements and Cyclic Branched Covers
In this article, using 3-orbifolds singular along a knot with underlying space a homology sphere $Y^3$, the question of existence of non-trivial and non-abelian $\SU(2)$-representations of the fundamental group of cyclic branched covers of $Y^3$ along a knot is studied. We first use Floer Homology for knots to derive an existence result of non-abelian $\SU(2)$-representations of the fundamental group of knot complements, for knots with a non-vanishing equivariant signature. This provides information on the existence of non-trivial and non-abelian $\SU(2)$-representations of the fundamental group of cyclic branched covers. We illustrate the method with some examples of knots in $S^3$.

Categories:57R57, 57M12, 57M25, 57M05

11. CJM 1999 (vol 51 pp. 1035)

Litherland, R. A.
The Homology of Abelian Covers of Knotted Graphs
Let $\tilde M$ be a regular branched cover of a homology 3-sphere $M$ with deck group $G\cong \zt^d$ and branch set a trivalent graph $\Gamma$; such a cover is determined by a coloring of the edges of $\Gamma$ with elements of $G$. For each index-2 subgroup $H$ of $G$, $M_H = \tilde M/H$ is a double branched cover of $M$. Sakuma has proved that $H_1(\tilde M)$ is isomorphic, modulo 2-torsion, to $\bigoplus_H H_1(M_H)$, and has shown that $H_1(\tilde M)$ is determined up to isomorphism by $\bigoplus_H H_1(M_H)$ in certain cases; specifically, when $d=2$ and the coloring is such that the branch set of each cover $M_H\to M$ is connected, and when $d=3$ and $\Gamma$ is the complete graph $K_4$. We prove this for a larger class of coverings: when $d=2$, for any coloring of a connected graph; when $d=3$ or $4$, for an infinite class of colored graphs; and when $d=5$, for a single coloring of the Petersen graph.

Categories:57M12, 57M25, 57M15

© Canadian Mathematical Society, 2017 :