Canadian Mathematical Society
Canadian Mathematical Society
  location:  Publicationsjournals
Search results

Search: MSC category 47B38 ( Operators on function spaces (general) )

  Expand all        Collapse all Results 1 - 6 of 6

1. CJM 2016 (vol 69 pp. 650)

Oikhberg, Timur; Tradacete, Pedro
Almost Disjointness Preservers
We study the stability of disjointness preservers on Banach lattices. In many cases, we prove that an "almost disjointness preserving" operator is well approximable by a disjointness preserving one. However, this approximation is not always possible, as our examples show.

Keywords:Banach lattice, disjointness preserving
Categories:47B38, 46B42

2. CJM 2016 (vol 68 pp. 1257)

Cascante, Carme; Fàbrega, Joan; Ortega, Joaquín M.
Sharp Norm Estimates for the Bergman Operator from Weighted Mixed-norm Spaces to Weighted Hardy Spaces
In this paper we give sharp norm estimates for the Bergman operator acting from weighted mixed-norm spaces to weighted Hardy spaces in the ball, endowed with natural norms.

Keywords:weighted Hardy space, Bergman operator, sharp norm estimate
Categories:47B38, 32A35, 42B25, 32A37

3. CJM 2009 (vol 62 pp. 415)

Sun, Shunhua; Zheng, Dechao; Zhong, Changyong
Classification of Reducing Subspaces of a Class of Multiplication Operators on the Bergman Space via the Hardy Space of the Bidisk
In this paper we obtain a complete description of nontrivial minimal reducing subspaces of the multiplication operator by a Blaschke product with four zeros on the Bergman space of the unit disk via the Hardy space of the bidisk.

Categories:47B35, 47B38

4. CJM 2006 (vol 58 pp. 548)

Galanopoulos, P.; Papadimitrakis, M.
Hausdorff and Quasi-Hausdorff Matrices on Spaces of Analytic Functions
We consider Hausdorff and quasi-Hausdorff matrices as operators on classical spaces of analytic functions such as the Hardy and the Bergman spaces, the Dirichlet space, the Bloch spaces and $\BMOA$. When the generating sequence of the matrix is the moment sequence of a measure $\mu$, we find the conditions on $\mu$ which are equivalent to the boundedness of the matrix on the various spaces.

Categories:47B38, 46E15, 40G05, 42A20

5. CJM 2000 (vol 52 pp. 468)

Edmunds, D. E.; Kokilashvili, V.; Meskhi, A.
Two-Weight Estimates For Singular Integrals Defined On Spaces Of Homogeneous Type
Two-weight inequalities of strong and weak type are obtained in the context of spaces of homogeneous type. Various applications are given, in particular to Cauchy singular integrals on regular curves.

Categories:47B38, 26D10

6. CJM 1997 (vol 49 pp. 100)

Lance, T. L.; Stessin, M. I.
Multiplication Invariant Subspaces of Hardy Spaces
This paper studies closed subspaces $L$ of the Hardy spaces $H^p$ which are $g$-invariant ({\it i.e.}, $g\cdot L \subseteq L)$ where $g$ is inner, $g\neq 1$. If $p=2$, the Wold decomposition theorem implies that there is a countable ``$g$-basis'' $f_1, f_2,\ldots$ of $L$ in the sense that $L$ is a direct sum of spaces $f_j\cdot H^2[g]$ where $H^2[g] = \{f\circ g \mid f\in H^2\}$. The basis elements $f_j$ satisfy the additional property that $\int_T |f_j|^2 g^k=0$, $k=1,2,\ldots\,.$ We call such functions $g$-$2$-inner. It also follows that any $f\in H^2$ can be factored $f=h_{f,2}\cdot (F_2\circ g)$ where $h_{f,2}$ is $g$-$2$-inner and $F$ is outer, generalizing the classical Riesz factorization. Using $L^p$ estimates for the canonical decomposition of $H^2$, we find a factorization $f=h_{f,p} \cdot (F_p \circ g)$ for $f\in H^p$. If $p\geq 1$ and $g$ is a finite Blaschke product we obtain, for any $g$-invariant $L\subseteq H^p$, a finite $g$-basis of $g$-$p$-inner functions.

Categories:30H05, 46E15, 47B38

© Canadian Mathematical Society, 2017 :