26. CJM 2013 (vol 66 pp. 596)
 Eilers, Søren; Restorff, Gunnar; Ruiz, Efren

The Ordered $K$theory of a Full Extension
Let $\mathfrak{A}$ be a $C^{*}$algebra with real rank zero which has
the stable weak cancellation property. Let $\mathfrak{I}$ be an ideal
of $\mathfrak{A}$ such that $\mathfrak{I}$ is stable and satisfies the
corona factorization property. We prove that
$
0 \to \mathfrak{I} \to \mathfrak{A} \to \mathfrak{A} / \mathfrak{I} \to 0
$
is a full extension if and only if the extension is stenotic and
$K$lexicographic. {As an immediate application, we extend the
classification result for graph $C^*$algebras obtained by Tomforde
and the first named author to the general nonunital case. In
combination with recent results by Katsura, Tomforde, West and the
first author, our result may also be used to give a purely
$K$theoretical description of when an essential extension of two
simple and stable graph $C^*$algebras is again a graph
$C^*$algebra.}
Keywords:classification, extensions, graph algebras Categories:46L80, 46L35, 46L05 

27. CJM 2013 (vol 65 pp. 1073)
 Kalantar, Mehrdad; Neufang, Matthias

From Quantum Groups to Groups
In this paper we use the recent developments in the
representation theory of locally compact quantum groups,
to assign, to each locally compact
quantum group $\mathbb{G}$, a locally compact group $\tilde {\mathbb{G}}$ which
is the quantum version of pointmasses, and is an
invariant for the latter. We show that ``quantum pointmasses"
can be identified with several other locally compact groups that can be
naturally assigned to the quantum group $\mathbb{G}$.
This assignment preserves compactness as well as
discreteness (hence also finiteness), and for large classes of quantum
groups, amenability. We calculate this invariant for some of the most
wellknown examples of
nonclassical quantum groups.
Also, we show that several structural properties of $\mathbb{G}$ are encoded
by $\tilde {\mathbb{G}}$: the latter, despite being a simpler object, can carry very
important information about $\mathbb{G}$.
Keywords:locally compact quantum group, locally compact group, von Neumann algebra Category:46L89 

28. CJM 2013 (vol 65 pp. 783)
 Garcés, Jorge J.; Peralta, Antonio M.

Generalised Triple Homomorphisms and Derivations
We introduce generalised triple homomorphism between Jordan Banach
triple systems as a concept which extends the notion of generalised homomorphism between
Banach algebras given by K. Jarosz and B.E. Johnson in 1985 and 1987, respectively.
We prove that every generalised triple homomorphism between JB$^*$triples
is automatically continuous. When particularised to C$^*$algebras, we rediscover
one of the main theorems established by B.E. Johnson. We shall also consider generalised
triple derivations from a Jordan Banach triple $E$ into a Jordan Banach triple $E$module,
proving that every generalised triple derivation from a JB$^*$triple $E$ into itself or into $E^*$
is automatically continuous.
Keywords:generalised homomorphism, generalised triple homomorphism, generalised triple derivation, Banach algebra, Jordan Banach triple, C$^*$algebra, JB$^*$triple Categories:46L05, 46L70, 47B48, 17C65, 46K70, 46L40, 47B47, 47B49 

29. CJM 2012 (vol 65 pp. 863)
 JosuatVergès, Matthieu

Cumulants of the $q$semicircular Law, Tutte Polynomials, and Heaps
The $q$semicircular distribution is a probability law that
interpolates between the Gaussian law and the semicircular law. There
is a combinatorial interpretation of its moments in terms of matchings
where $q$ follows the number of crossings, whereas for the free
cumulants one has to restrict the enumeration to connected matchings.
The purpose of this article is to describe combinatorial properties of
the classical cumulants. We show that like the free cumulants, they
are obtained by an enumeration of connected matchings, the weight
being now an evaluation of the Tutte polynomial of a socalled
crossing graph. The case $q=0$ of these cumulants was studied by
Lassalle using symmetric functions and hypergeometric series. We show
that the underlying combinatorics is explained through the theory of
heaps, which is Viennot's geometric interpretation of the
CartierFoata monoid. This method also gives a general formula for
the cumulants in terms of free cumulants.
Keywords:moments, cumulants, matchings, Tutte polynomials, heaps Categories:05A18, 05C31, 46L54 

30. CJM 2012 (vol 65 pp. 481)
31. CJM 2012 (vol 65 pp. 52)
32. CJM 2012 (vol 65 pp. 485)
 Bice, Tristan Matthew

Filters in C*Algebras
In this paper we analyze states on C*algebras and
their relationship to filterlike structures of projections and
positive elements in the unit ball. After developing the basic theory
we use this to investigate the KadisonSinger conjecture, proving its
equivalence to an apparently quite weak paving conjecture and the
existence of unique maximal centred extensions of projections coming
from ultrafilters on the natural numbers. We then prove that Reid's
positive answer to this for qpoints in fact also holds for rapid
ppoints, and that maximal centred filters are obtained in this case.
We then show that consistently such maximal centred filters do not
exist at all meaning that, for every pure state on the Calkin algebra,
there exists a pair of projections on which the state is 1, even
though the state is bounded strictly below 1 for projections below
this pair. Lastly we investigate towers, using cardinal invariant
equalities to construct towers on the natural numbers that do and do
not remain towers when canonically embedded into the Calkin algebra.
Finally we show that consistently all towers on the natural numbers
remain towers under this embedding.
Keywords:C*algebras, states, KadinsonSinger conjecture, ultrafilters, towers Categories:46L03, 03E35 

33. CJM 2011 (vol 64 pp. 755)
 Brown, Lawrence G.; Lee, Hyun Ho

Homotopy Classification of Projections in the Corona Algebra of a Nonsimple $C^*$algebra
We study projections in the corona algebra of $C(X)\otimes K$, where K
is the $C^*$algebra of compact operators on a separable infinite
dimensional Hilbert space and $X=[0,1],[0,\infty),(\infty,\infty)$,
or $[0,1]/\{ 0,1 \}$. Using BDF's essential codimension, we determine
conditions for a projection in the corona algebra to be liftable to a
projection in the multiplier algebra. We also determine the
conditions for two projections to be equal in $K_0$, Murrayvon
Neumann equivalent, unitarily equivalent, or homotopic. In light of
these characterizations, we construct examples showing that the
equivalence notions above are all distinct.
Keywords:essential codimension, continuous field of Hilbert spaces, Corona algebra Categories:46L05, 46L80 

34. CJM 2011 (vol 64 pp. 544)
35. CJM 2011 (vol 64 pp. 805)
 Chapon, François; Defosseux, Manon

Quantum Random Walks and Minors of Hermitian Brownian Motion
Considering quantum random walks, we construct discretetime
approximations of the eigenvalues processes of minors of Hermitian
Brownian motion. It has been recently proved by Adler, Nordenstam, and
van Moerbeke that the process of eigenvalues of
two consecutive minors of a Hermitian Brownian motion is a Markov
process; whereas, if one considers more than two consecutive minors,
the Markov property fails. We show that there are analog results in
the noncommutative counterpart and establish the Markov property of
eigenvalues of some particular submatrices of Hermitian Brownian
motion.
Keywords:quantum random walk, quantum Markov chain, generalized casimir operators, Hermitian Brownian motion, diffusions, random matrices, minor process Categories:46L53, 60B20, 14L24 

36. CJM 2011 (vol 64 pp. 573)
 Nawata, Norio

Fundamental Group of Simple $C^*$algebras with Unique Trace III
We introduce the fundamental group ${\mathcal F}(A)$ of
a simple $\sigma$unital $C^*$algebra $A$ with unique (up to scalar multiple)
densely defined lower semicontinuous trace.
This is a generalization of ``Fundamental Group of Simple
$C^*$algebras with Unique Trace I and II'' by Nawata and Watatani.
Our definition in this paper makes sense for stably projectionless $C^*$algebras.
We show that there exist separable stably projectionless $C^*$algebras such that
their fundamental groups are equal to $\mathbb{R}_+^\times$
by using the classification theorem of Razak and Tsang.
This is a contrast to the unital case in Nawata and Watatani.
This study is motivated by the work of Kishimoto and Kumjian.
Keywords:fundamental group, Picard group, Hilbert module, countable basis, stably projectionless algebra, dimension function Categories:46L05, 46L08, 46L35 

37. CJM 2011 (vol 64 pp. 455)
 Sherman, David

On Cardinal Invariants and Generators for von Neumann Algebras
We demonstrate how most common cardinal invariants associated with a von
Neumann algebra $\mathcal M$ can be computed from the decomposability number,
$\operatorname{dens}(\mathcal M)$, and the minimal cardinality of a generating
set, $\operatorname{gen}(\mathcal M)$.
Applications include the equivalence of the wellknown generator
problem, ``Is every separablyacting von Neumann algebra
singlygenerated?", with the formally stronger questions, ``Is every
countablygenerated von Neumann algebra singlygenerated?" and ``Is
the $\operatorname{gen}$ invariant monotone?" Modulo the generator problem, we
determine the range of the invariant $\bigl( \operatorname{gen}(\mathcal M),
\operatorname{dens}(\mathcal M) \bigr)$,
which is mostly governed by the inequality $\operatorname{dens}(\mathcal M) \leq
\mathfrak C^{\operatorname{gen}(\mathcal M)}$.
Keywords:von Neumann algebra, cardinal invariant, generator problem, decomposability number, representation density Category:46L10 

38. CJM 2011 (vol 63 pp. 798)
 Daws, Matthew

Representing Multipliers of the Fourier Algebra on NonCommutative $L^p$ Spaces
We show that the multiplier algebra of the Fourier algebra on a
locally compact group $G$ can be isometrically represented on a direct
sum on noncommutative $L^p$ spaces associated with the right von
Neumann algebra of $G$. The resulting image is the idealiser of the
image of the Fourier algebra. If these spaces are given their
canonical operator space structure, then we get a completely isometric
representation of the completely bounded multiplier algebra. We make
a careful study of the noncommutative $L^p$ spaces we construct and
show that they are completely isometric to those considered recently
by Forrest, Lee, and Samei. We improve a result of theirs about module
homomorphisms. We suggest a definition of a FigaTalamancaHerz
algebra built out of these noncommutative $L^p$ spaces, say
$A_p(\widehat G)$. It is shown that $A_2(\widehat G)$ is isometric to
$L^1(G)$, generalising the abelian situation.
Keywords:multiplier, Fourier algebra, noncommutative $L^p$ space, complex interpolation Categories:43A22, 43A30, 46L51, 22D25, 42B15, 46L07, 46L52 

39. CJM 2011 (vol 63 pp. 551)
 Hadwin, Don; Li, Qihui; Shen, Junhao

Topological Free Entropy Dimensions in Nuclear C$^*$algebras and in Full Free Products of Unital C$^*$algebras
In the paper, we introduce a new concept,
topological orbit dimension of an $n$tuple of elements in a unital
C$^{\ast}$algebra. Using this concept, we conclude that Voiculescu's
topological free
entropy dimension of every finite family of selfadjoint generators of a
nuclear C$^{\ast}$algebra is less than or equal to $1$. We also show that the
Voiculescu's topological free entropy dimension is additive in the full free
product of some unital C$^{\ast}$algebras. We show that the unital full free
product of Blackadar and Kirchberg's unital MF
algebras is also an MF algebra. As an application, we obtain that
$\mathop{\textrm{Ext}}(C_{r}^{\ast}(F_{2})\ast_{\mathbb{C}}C_{r}^{\ast}(F_{2}))$ is not a group.
Keywords: topological free entropy dimension, unital C$^{*}$algebra Categories:46L10, 46L54 

40. CJM 2011 (vol 63 pp. 381)
 Ji, Kui ; Jiang, Chunlan

A Complete Classification of AI Algebras with the Ideal Property
Let $A$ be an AI algebra; that is, $A$ is the $\mbox{C}^{*}$algebra inductive limit
of a sequence
$$
A_{1}\stackrel{\phi_{1,2}}{\longrightarrow}A_{2}\stackrel{\phi_{2,3}}{\longrightarrow}A_{3}
\longrightarrow\cdots\longrightarrow A_{n}\longrightarrow\cdots,
$$
where
$A_{n}=\bigoplus_{i=1}^{k_n}M_{[n,i]}(C(X^{i}_n))$,
$X^{i}_n$ are $[0,1]$, $k_n$, and
$[n,i]$ are positive integers.
Suppose that $A$ has the
ideal property: each closed twosided ideal of $A$ is generated by
the projections inside the ideal, as a closed twosided ideal.
In this article, we give a complete classification of AI algebras with the ideal property.
Keywords:AI algebras, Kgroup, tracial state, ideal property, classification Categories:46L35, 19K14, 46L05, 46L08 

41. CJM 2011 (vol 63 pp. 500)
 Dadarlat, Marius; Elliott, George A.; Niu, Zhuang

OneParameter Continuous Fields of Kirchberg Algebras. II
Parallel to the first two authors' earlier classification of separable, unita
oneparameter, continuous fields of Kirchberg algebras with torsion free
$\mathrm{K}$groups supported in one dimension, oneparameter, separable, uni
continuous fields of AFalgebras are classified by their ordered
$\mathrm{K}_0$sheaves. EffrosHandelmanShen type theorems are pr separable
unital oneparameter continuous fields of AFalgebras and Kirchberg algebras.
Keywords:continuous fields of C$^*$algebras, $\mathrm{K}_0$presheaves, EffrosHandeen type theorem Category:46L35 

42. CJM 2010 (vol 63 pp. 222)
 Wang, JiunChau

Limit Theorems for Additive Conditionally Free Convolution
In this paper we determine the limiting distributional behavior for
sums of infinitesimal conditionally free random variables. We show that the weak
convergence of classical convolution and that of conditionally free convolution
are equivalent for measures in an infinitesimal triangular array,
where the measures may have unbounded support. Moreover, we use these
limit theorems to study the conditionally free infinite divisibility. These results
are obtained by complex analytic methods without reference to the
combinatorics of cfree convolution.
Keywords:additive cfree convolution, limit theorems, infinitesimal arrays Categories:46L53, 60F05 

43. CJM 2010 (vol 63 pp. 3)
 Banica, T.; Belinschi, S. T.; Capitaine, M.; Collins, B.

Free Bessel Laws
We introduce and study a remarkable family of real probability
measures $\pi_{st}$ that we call free Bessel laws. These are related
to the free Poisson law $\pi$ via the formulae
$\pi_{s1}=\pi^{\boxtimes s}$ and ${\pi_{1t}=\pi^{\boxplus t}}$. Our
study includes definition and basic properties, analytic aspects
(supports, atoms, densities), combinatorial aspects (functional
transforms, moments, partitions), and a discussion of the relation
with random matrices and quantum groups.
Keywords:Poisson law, Bessel function, Wishart matrix, quantum group Categories:46L54, 15A52, 16W30 

44. CJM 2010 (vol 62 pp. 845)
 Samei, Ebrahim; Spronk, Nico; Stokke, Ross

Biflatness and PseudoAmenability of Segal Algebras
We investigate generalized amenability and biflatness properties of various (operator) Segal algebras in both the group algebra, $L^1(G)$, and the Fourier algebra, $A(G)$, of a locally compact group~$G$.
Keywords:Segal algebra, pseudoamenable Banach algebra, biflat Banach algebra Categories:43A20, 43A30, 46H25, 46H10, 46H20, 46L07 

45. CJM 2010 (vol 62 pp. 889)
 Xia, Jingbo

Singular Integral Operators and Essential Commutativity on the Sphere
Let ${\mathcal T}$ be the $C^\ast $algebra generated by the Toeplitz operators $\{T_\varphi : \varphi \in L^\infty (S,d\sigma )\}$ on the Hardy space $H^2(S)$ of the unit sphere in $\mathbf{C}^n$. It is well known that ${\mathcal T}$ is contained in the essential commutant of $\{T_\varphi : \varphi \in \operatorname{VMO}\cap L^\infty (S,d\sigma )\}$. We show that the essential commutant of $\{T_\varphi : \varphi \in \operatorname{VMO}\cap L^\infty (S,d\sigma )\}$ is strictly larger than ${\mathcal T}$.
Categories:32A55, 46L05, 47L80 

46. CJM 2009 (vol 61 pp. 1262)
 Dong, Z.

On the Local Lifting Properties of Operator Spaces
In this paper, we mainly study operator spaces which have the
locally lifting property (LLP). The dual of any ternary ring of operators is shown to
satisfy the strongly local reflexivity, and this is used to prove
that strongly local reflexivity holds also for operator spaces
which have the LLP. Several homological characterizations of the
LLP and weak expectation property are given. We also prove that for any operator space
$V$, $V^{**}$ has the LLP if and only if $V$ has the LLP and
$V^{*}$ is exact.
Keywords:operator space, locally lifting property, strongly locally reflexive Category:46L07 

47. CJM 2009 (vol 61 pp. 1239)
 Davidson, Kenneth R.; Yang, Dilian

Periodicity in Rank 2 Graph Algebras
Kumjian and Pask introduced an aperiodicity condition
for higher rank graphs.
We present a detailed analysis of when this occurs
in certain rank 2 graphs.
When the algebra is aperiodic, we give another proof
of the simplicity of $\mathrm{C}^*(\mathbb{F}^+_{\theta})$.
The periodic $\mathrm{C}^*$algebras are characterized, and it is shown
that $\mathrm{C}^*(\mathbb{F}^+_{\theta}) \simeq
\mathrm{C}(\mathbb{T})\otimes\mathfrak{A}$
where $\mathfrak{A}$ is a simple $\mathrm{C}^*$algebra.
Keywords:higher rank graph, aperiodicity condition, simple $\mathrm{C}^*$algebra, expectation Categories:47L55, 47L30, 47L75, 46L05 

48. CJM 2009 (vol 61 pp. 241)
 Azamov, N. A.; Carey, A. L.; Dodds, P. G.; Sukochev, F. A.

Operator Integrals, Spectral Shift, and Spectral Flow
We present a new and simple approach to the theory of multiple
operator integrals that applies to unbounded operators affiliated with general \vNa s.
For semifinite \vNa s we give applications
to the Fr\'echet differentiation of operator functions that sharpen existing results,
and establish the BirmanSolomyak representation of the spectral
shift function of M.\,G.\,Krein
in terms of an average of spectral measures in the type II setting.
We also exhibit a surprising connection between the spectral shift
function and spectral flow.
Categories:47A56, 47B49, 47A55, 46L51 

49. CJM 2008 (vol 60 pp. 975)
 Boca, Florin P.

An AF Algebra Associated with the Farey Tessellation
We associate with the Farey tessellation of the upper
halfplane an
AF algebra $\AA$ encoding the ``cutting sequences'' that define
vertical geodesics.
The EffrosShen AF algebras arise as quotients
of $\AA$. Using the path algebra model for AF algebras we construct, for
each $\tau \in \big(0,\frac{1}{4}\big]$, projections $(E_n)$ in
$\AA$ such that $E_n E_{n\pm 1}E_n \leq \tau E_n$.
Categories:46L05, 11A55, 11B57, 46L55, 37E05, 82B20 

50. CJM 2008 (vol 60 pp. 703)
 Toms, Andrew S.; Winter, Wilhelm

$\mathcal{Z}$Stable ASH Algebras
The JiangSu algebra $\mathcal{Z}$ has come to prominence in the
classification program for nuclear $C^*$algebras of late, due
primarily to the fact that Elliott's classification conjecture in its
strongest form predicts that all simple, separable, and nuclear
$C^*$algebras with unperforated $\mathrm{K}$theory will absorb
$\mathcal{Z}$ tensorially, i.e., will be $\mathcal{Z}$stable. There
exist counterexamples which suggest that the conjecture will only hold
for simple, nuclear, separable and $\mathcal{Z}$stable
$C^*$algebras. We prove that virtually all classes of nuclear
$C^*$algebras for which the Elliott conjecture has been confirmed so
far consist of $\mathcal{Z}$stable $C^*$algebras. This
follows in large part from the following result, also proved herein:
separable and approximately divisible $C^*$algebras are
$\mathcal{Z}$stable.
Keywords:nuclear $C^*$algebras, Ktheory, classification Categories:46L85, 46L35 
