Canadian Mathematical Society
Canadian Mathematical Society
  location:  Publicationsjournals
Search results

Search: MSC category 46L87 ( Noncommutative differential geometry [See also 58B32, 58B34, 58J22] )

  Expand all        Collapse all Results 1 - 3 of 3

1. CJM Online first

Georgescu, Magdalena Cecilia
Integral Formula for Spectral Flow for $p$-Summable Operators
Fix a von Neumann algebra $\mathcal{N}$ equipped with a suitable trace $\tau$. For a path of self-adjoint Breuer-Fredholm operators, the spectral flow measures the net amount of spectrum which moves from negative to non-negative. We consider specifically the case of paths of bounded perturbations of a fixed unbounded self-adjoint Breuer-Fredholm operator affiliated with $\mathcal{N}$. If the unbounded operator is p-summable (that is, its resolvents are contained in the ideal $L^p$), then it is possible to obtain an integral formula which calculates spectral flow. This integral formula was first proven by Carey and Phillips, building on earlier approaches of Phillips. Their proof was based on first obtaining a formula for the larger class of $\theta$-summable operators, and then using Laplace transforms to obtain a p-summable formula. In this paper, we present a direct proof of the p-summable formula, which is both shorter and simpler than theirs.

Keywords:spectral flow, $p$-summable Fredholm module
Categories:19k56, 46L87, , 58B34

2. CJM 2005 (vol 57 pp. 1056)

Ozawa, Narutaka; Rieffel, Marc A.
Hyperbolic Group $C^*$-Algebras and Free-Product $C^*$-Algebras as Compact Quantum Metric Spaces
Let $\ell$ be a length function on a group $G$, and let $M_{\ell}$ denote the operator of pointwise multiplication by $\ell$ on $\bell^2(G)$. Following Connes, $M_{\ell}$ can be used as a ``Dirac'' operator for $C_r^*(G)$. It defines a Lipschitz seminorm on $C_r^*(G)$, which defines a metric on the state space of $C_r^*(G)$. We show that if $G$ is a hyperbolic group and if $\ell$ is a word-length function on $G$, then the topology from this metric coincides with the weak-$*$ topology (our definition of a ``compact quantum metric space''). We show that a convenient framework is that of filtered $C^*$-algebras which satisfy a suitable ``Haagerup-type'' condition. We also use this framework to prove an analogous fact for certain reduced free products of $C^*$-algebras.

Categories:46L87, 20F67, 46L09

3. CJM 2000 (vol 52 pp. 849)

Sukochev, F. A.
Operator Estimates for Fredholm Modules
We study estimates of the type $$ \Vert \phi(D) - \phi(D_0) \Vert_{\emt} \leq C \cdot \Vert D - D_0 \Vert^{\alpha}, \quad \alpha = \frac12, 1 $$ where $\phi(t) = t(1 + t^2)^{-1/2}$, $D_0 = D_0^*$ is an unbounded linear operator affiliated with a semifinite von Neumann algebra $\calM$, $D - D_0$ is a bounded self-adjoint linear operator from $\calM$ and $(1 + D_0^2)^{-1/2} \in \emt$, where $\emt$ is a symmetric operator space associated with $\calM$. In particular, we prove that $\phi(D) - \phi(D_0)$ belongs to the non-commutative $L_p$-space for some $p \in (1,\infty)$, provided $(1 + D_0^2)^{-1/2}$ belongs to the non-commutative weak $L_r$-space for some $r \in [1,p)$. In the case $\calM = \calB (\calH)$ and $1 \leq p \leq 2$, we show that this result continues to hold under the weaker assumption $(1 + D_0^2)^{-1/2} \in \calC_p$. This may be regarded as an odd counterpart of A.~Connes' result for the case of even Fredholm modules.

Categories:46L50, 46E30, 46L87, 47A55, 58B15

© Canadian Mathematical Society, 2017 :