1. CJM Online first
 Georgescu, Magdalena Cecilia

Integral Formula for Spectral Flow for $p$Summable Operators
Fix a von Neumann algebra $\mathcal{N}$ equipped with a suitable trace
$\tau$. For a path of selfadjoint BreuerFredholm operators, the
spectral flow measures the net amount of spectrum which moves from
negative to nonnegative. We consider specifically the case of paths
of bounded perturbations of a fixed unbounded selfadjoint
BreuerFredholm operator affiliated with $\mathcal{N}$. If the unbounded
operator is psummable (that is, its resolvents are contained in the
ideal $L^p$), then it is possible to obtain an integral formula which
calculates spectral flow. This integral formula was first proven by
Carey and Phillips, building on earlier approaches of Phillips. Their
proof was based on first obtaining a formula for the larger class of
$\theta$summable operators, and then using Laplace transforms to
obtain a psummable formula. In this paper, we present a direct proof
of the psummable formula, which is both shorter and simpler than
theirs.
Keywords:spectral flow, $p$summable Fredholm module Categories:19k56, 46L87, , 58B34 

2. CJM 2005 (vol 57 pp. 1056)
 Ozawa, Narutaka; Rieffel, Marc A.

Hyperbolic Group $C^*$Algebras and FreeProduct $C^*$Algebras as Compact Quantum Metric Spaces
Let $\ell$ be a length function on a group $G$, and let $M_{\ell}$
denote the
operator of pointwise multiplication by $\ell$ on $\bell^2(G)$.
Following Connes,
$M_{\ell}$ can be used as a ``Dirac'' operator for $C_r^*(G)$. It defines a
Lipschitz seminorm on $C_r^*(G)$, which defines a metric on the state space of
$C_r^*(G)$. We show that if $G$ is a hyperbolic group and if $\ell$ is
a wordlength function on $G$, then the topology from this metric
coincides with the
weak$*$ topology (our definition of a ``compact quantum metric
space''). We show that a convenient framework is that of filtered
$C^*$algebras which satisfy a suitable ``Haageruptype'' condition. We
also use this
framework to prove an analogous fact for certain reduced
free products of $C^*$algebras.
Categories:46L87, 20F67, 46L09 

3. CJM 2000 (vol 52 pp. 849)
 Sukochev, F. A.

Operator Estimates for Fredholm Modules
We study estimates of the type
$$
\Vert \phi(D)  \phi(D_0) \Vert_{\emt} \leq C \cdot \Vert D  D_0
\Vert^{\alpha}, \quad \alpha = \frac12, 1
$$
where $\phi(t) = t(1 + t^2)^{1/2}$, $D_0 = D_0^*$ is an unbounded
linear operator affiliated with a semifinite von Neumann algebra
$\calM$, $D  D_0$ is a bounded selfadjoint linear operator from
$\calM$ and $(1 + D_0^2)^{1/2} \in \emt$, where $\emt$ is a symmetric
operator space associated with $\calM$. In particular, we prove that
$\phi(D)  \phi(D_0)$ belongs to the noncommutative $L_p$space for
some $p \in (1,\infty)$, provided $(1 + D_0^2)^{1/2}$ belongs to the
noncommutative weak $L_r$space for some $r \in [1,p)$. In the case
$\calM = \calB (\calH)$ and $1 \leq p \leq 2$, we show that this
result continues to hold under the weaker assumption $(1 +
D_0^2)^{1/2} \in \calC_p$. This may be regarded as an odd
counterpart of A.~Connes' result for the case of even Fredholm
modules.
Categories:46L50, 46E30, 46L87, 47A55, 58B15 
