1. CJM Online first
 Eilers, Søren; Restorff, Gunnar; Ruiz, Efren; Sørensen, Adam P. W.

Geometric classification of graph C*algebras over finite graphs
We address the classification problem for graph $C^*$algebras of
finite graphs (finitely many edges and vertices), containing
the class of CuntzKrieger algebras as a
prominent special case. Contrasting earlier work, we do not assume
that the graphs satisfy the standard condition (K), so that the
graph
$C^*$algebras may come with uncountably many ideals.
We find that in this generality, stable isomorphism of graph
$C^*$algebras does not coincide with the geometric notion of Cuntz
move equivalence. However, adding a modest condition on the
graphs, the two notions are proved to be mutually equivalent and
equivalent to the $C^*$algebras having isomorphic $K$theories. This
proves in turn that under this condition, the graph
$C^*$algebras are in fact classifiable by $K$theory, providing in
particular complete classification when the $C^*$algebras in question
are either of real rank zero or type I/postliminal. The key ingredient
in obtaining these results is a characterization of Cuntz move
equivalence using the adjacency matrices of the graphs.
Our results are applied to discuss the classification problem
for the quantum lens spaces defined by Hong and SzymaÅski,
and to complete the classification of graph $C^*$algebras associated to
all simple graphs with four vertices or less.
Keywords:graph $C^*$algebra, geometric classification, $K$theory, flow equivalence Categories:46L35, 46L80, 46L55, 37B10 

2. CJM 2016 (vol 68 pp. 1023)
 Phillips, John; Raeburn, Iain

Centrevalued Index for Toeplitz Operators with Noncommuting Symbols
We formulate and prove a ``winding number'' index
theorem for certain ``Toeplitz'' operators in the same spirit
as GohbergKrein, Lesch and others. The ``number'' is replaced
by a selfadjoint operator in a subalgebra $Z\subseteq Z(A)$
of a unital $C^*$algebra, $A$. We assume a faithful $Z$valued
trace $\tau$ on $A$ left invariant under an action $\alpha:{\mathbf
R}\to Aut(A)$ leaving $Z$ pointwise fixed.If $\delta$ is the
infinitesimal generator of $\alpha$ and $u$ is invertible in
$\operatorname{dom}(\delta)$ then the
``winding operator'' of $u$ is $\frac{1}{2\pi i}\tau(\delta(u)u^{1})\in
Z_{sa}.$ By a careful choice of representations we extend $(A,Z,\tau,\alpha)$
to a von Neumann setting
$(\mathfrak{A},\mathfrak{Z},\bar\tau,\bar\alpha)$ where $\mathfrak{A}=A^{\prime\prime}$
and $\mathfrak{Z}=Z^{\prime\prime}.$
Then $A\subset\mathfrak{A}\subset \mathfrak{A}\rtimes{\bf R}$, the von
Neumann crossed product, and there is a faithful, dual $\mathfrak{Z}$trace
on $\mathfrak{A}\rtimes{\bf R}$. If $P$ is the projection in $\mathfrak{A}\rtimes{\bf
R}$
corresponding to the nonnegative spectrum of the generator of
$\mathbf R$ inside $\mathfrak{A}\rtimes{\mathbf R}$ and
$\tilde\pi:A\to\mathfrak{A}\rtimes{\mathbf R}$
is the embedding then we define for $u\in A^{1}$, $T_u=P\tilde\pi(u)
P$
and show it is Fredholm in an appropriate sense and the $\mathfrak{Z}$valued
index of $T_u$ is the negative of the winding operator.
In outline the proof follows the proof of the scalar case done
previously by the authors. The main difficulty is making sense
of the constructions with the scalars replaced by $\mathfrak{Z}$ in
the von Neumann setting. The construction of the dual $\mathfrak{Z}$trace
on $\mathfrak{A}\rtimes{\mathbf R}$ required the nontrivial development
of a $\mathfrak{Z}$Hilbert Algebra theory. We show that certain of
these Fredholm operators fiber as a ``section'' of Fredholm operators
with scalarvalued index and the centrevalued index fibers as
a section of the scalarvalued indices.
Keywords:index ,Toeplitz operator Categories:46L55, 19K56, 46L80 

3. CJM 2013 (vol 65 pp. 1287)
 Reihani, Kamran

$K$theory of Furstenberg Transformation Group $C^*$algebras
The paper studies the $K$theoretic invariants of the crossed product
$C^{*}$algebras associated with an important family of homeomorphisms
of the tori $\mathbb{T}^{n}$ called Furstenberg transformations.
Using the PimsnerVoiculescu theorem, we prove that given $n$, the
$K$groups of those crossed products, whose corresponding $n\times n$
integer matrices are unipotent of maximal degree, always have the same
rank $a_{n}$. We show using the theory developed here that a claim
made in the literature about the torsion subgroups of these $K$groups
is false. Using the representation theory of the simple Lie algebra
$\frak{sl}(2,\mathbb{C})$, we show that, remarkably, $a_{n}$ has a
combinatorial significance. For example, every $a_{2n+1}$ is just the
number of ways that $0$ can be represented as a sum of integers
between $n$ and $n$ (with no repetitions). By adapting an argument
of van Lint (in which he answered a question of ErdÅs), a simple,
explicit formula for the asymptotic behavior of the sequence
$\{a_{n}\}$ is given. Finally, we describe the order structure of the
$K_{0}$groups of an important class of Furstenberg crossed products,
obtaining their complete Elliott invariant using classification
results of H. Lin and N. C. Phillips.
Keywords:$K$theory, transformation group $C^*$algebra, Furstenberg transformation, Anzai transformation, minimal homeomorphism, positive cone, minimal homeomorphism Categories:19K14, 19K99, 46L35, 46L80, , 05A15, 05A16, 05A17, 15A36, 17B10, 17B20, 37B05, 54H20 

4. CJM 2013 (vol 66 pp. 596)
 Eilers, Søren; Restorff, Gunnar; Ruiz, Efren

The Ordered $K$theory of a Full Extension
Let $\mathfrak{A}$ be a $C^{*}$algebra with real rank zero which has
the stable weak cancellation property. Let $\mathfrak{I}$ be an ideal
of $\mathfrak{A}$ such that $\mathfrak{I}$ is stable and satisfies the
corona factorization property. We prove that
$
0 \to \mathfrak{I} \to \mathfrak{A} \to \mathfrak{A} / \mathfrak{I} \to 0
$
is a full extension if and only if the extension is stenotic and
$K$lexicographic. {As an immediate application, we extend the
classification result for graph $C^*$algebras obtained by Tomforde
and the first named author to the general nonunital case. In
combination with recent results by Katsura, Tomforde, West and the
first author, our result may also be used to give a purely
$K$theoretical description of when an essential extension of two
simple and stable graph $C^*$algebras is again a graph
$C^*$algebra.}
Keywords:classification, extensions, graph algebras Categories:46L80, 46L35, 46L05 

5. CJM 2011 (vol 64 pp. 755)
 Brown, Lawrence G.; Lee, Hyun Ho

Homotopy Classification of Projections in the Corona Algebra of a Nonsimple $C^*$algebra
We study projections in the corona algebra of $C(X)\otimes K$, where K
is the $C^*$algebra of compact operators on a separable infinite
dimensional Hilbert space and $X=[0,1],[0,\infty),(\infty,\infty)$,
or $[0,1]/\{ 0,1 \}$. Using BDF's essential codimension, we determine
conditions for a projection in the corona algebra to be liftable to a
projection in the multiplier algebra. We also determine the
conditions for two projections to be equal in $K_0$, Murrayvon
Neumann equivalent, unitarily equivalent, or homotopic. In light of
these characterizations, we construct examples showing that the
equivalence notions above are all distinct.
Keywords:essential codimension, continuous field of Hilbert spaces, Corona algebra Categories:46L05, 46L80 

6. CJM 2007 (vol 59 pp. 343)
 Lin, Huaxin

Weak Semiprojectivity in Purely Infinite Simple $C^*$Algebras
Let $A$ be a separable amenable purely infinite simple \CA which
satisfies the Universal Coefficient Theorem. We prove that $A$ is
weakly semiprojective if and only if $K_i(A)$ is a countable
direct sum of finitely generated groups ($i=0,1$). Therefore, if
$A$ is such a \CA, for any $\ep>0$ and any finite subset ${\mathcal
F}\subset A$ there exist $\dt>0$ and a finite subset ${\mathcal
G}\subset A$ satisfying the following: for any contractive
positive linear map $L: A\to B$ (for any \CA $B$) with $
\L(ab)L(a)L(b)\<\dt$ for $a, b\in {\mathcal G}$
there exists a homomorphism $h\from A\to B$ such that
$ \h(a)L(a)\<\ep$ for $a\in {\mathcal F}$.
Keywords:weakly semiprojective, purely infinite simple $C^*$algebras Categories:46L05, 46L80 

7. CJM 2001 (vol 53 pp. 1223)
 Mygind, Jesper

Classification of Certain Simple $C^*$Algebras with Torsion in $K_1$
We show that the Elliott invariant is a classifying invariant for the
class of $C^*$algebras that are simple unital infinite dimensional
inductive limits of finite direct sums of building blocks of the form
$$
\{f \in C(\T) \otimes M_n : f(x_i) \in M_{d_i}, i = 1,2,\dots,N\},
$$
where $x_1,x_2,\dots,x_N \in \T$, $d_1,d_2,\dots,d_N$ are integers
dividing $n$, and $M_{d_i}$ is embedded unitally into $M_n$.
Furthermore we prove existence and uniqueness theorems for
$*$homomorphisms between such algebras and we identify the range of
the invariant.
Categories:46L80, 19K14, 46L05 

8. CJM 2001 (vol 53 pp. 979)
 Nagisa, Masaru; Osaka, Hiroyuki; Phillips, N. Christopher

Ranks of Algebras of Continuous $C^*$Algebra Valued Functions
We prove a number of results about the stable and particularly the
real ranks of tensor products of \ca s under the assumption that one
of the factors is commutative. In particular, we prove the following:
{\raggedright
\begin{enumerate}[(5)]
\item[(1)] If $X$ is any locally compact $\sm$compact Hausdorff space
and $A$ is any \ca, then\break
$\RR \bigl( C_0 (X) \otimes A \bigr) \leq
\dim (X) + \RR(A)$.
\item[(2)] If $X$ is any locally compact Hausdorff space and $A$ is
any \pisca, then $\RR \bigl( C_0 (X) \otimes A \bigr) \leq 1$.
\item[(3)] $\RR \bigl( C ([0,1]) \otimes A \bigr) \geq 1$ for any
nonzero \ca\ $A$, and $\sr \bigl( C ([0,1]^2) \otimes A \bigr) \geq 2$
for any unital \ca\ $A$.
\item[(4)] If $A$ is a unital \ca\ such that $\RR(A) = 0$, $\sr (A) =
1$, and $K_1 (A) = 0$, then\break
$\sr \bigl( C ([0,1]) \otimes A \bigr) = 1$.
\item[(5)] There is a simple separable unital nuclear \ca\ $A$ such
that $\RR(A) = 1$ and\break
$\sr \bigl( C ([0,1]) \otimes A \bigr) = 1$.
\end{enumerate}}
Categories:46L05, 46L52, 46L80, 19A13, 19B10 

9. CJM 2001 (vol 53 pp. 809)
 Robertson, Guyan; Steger, Tim

Asymptotic $K$Theory for Groups Acting on $\tA_2$ Buildings
Let $\Gamma$ be a torsion free lattice in $G=\PGL(3, \mathbb{F})$ where
$\mathbb{F}$ is a nonarchimedean local field. Then $\Gamma$ acts freely
on the affine BruhatTits building $\mathcal{B}$ of $G$ and there is an
induced action on the boundary $\Omega$ of $\mathcal{B}$. The crossed
product $C^*$algebra $\mathcal{A}(\Gamma)=C(\Omega) \rtimes \Gamma$
depends only on $\Gamma$ and is classified by its $K$theory. This article
shows how to compute the $K$theory of $\mathcal{A}(\Gamma)$ and of the
larger class of rank two CuntzKrieger algebras.
Keywords:$K$theory, $C^*$algebra, affine building Categories:46L80, 51E24 

10. CJM 2001 (vol 53 pp. 631)
 Walters, Samuel G.

KTheory of NonCommutative Spheres Arising from the Fourier Automorphism
For a dense $G_\delta$ set of real parameters $\theta$ in $[0,1]$
(containing the rationals) it is shown that the group $K_0 (A_\theta
\rtimes_\sigma \mathbb{Z}_4)$ is isomorphic to $\mathbb{Z}^9$, where
$A_\theta$ is the rotation C*algebra generated by unitaries $U$, $V$
satisfying $VU = e^{2\pi i\theta} UV$ and $\sigma$ is the Fourier
automorphism of $A_\theta$ defined by $\sigma(U) = V$, $\sigma(V) =
U^{1}$. More precisely, an explicit basis for $K_0$ consisting of
nine canonical modules is given. (A slight generalization of this
result is also obtained for certain separable continuous fields of
unital C*algebras over $[0,1]$.) The Connes Chern character $\ch
\colon K_0 (A_\theta \rtimes_\sigma \mathbb{Z}_4) \to H^{\ev} (A_\theta
\rtimes_\sigma \mathbb{Z}_4)^*$ is shown to be injective for a dense
$G_\delta$ set of parameters $\theta$. The main computational tool in
this paper is a group homomorphism $\vtr \colon K_0 (A_\theta
\rtimes_\sigma \mathbb{Z}_4) \to \mathbb{R}^8 \times \mathbb{Z}$
obtained from the Connes Chern character by restricting the
functionals in its codomain to a certain ninedimensional subspace of
$H^{\ev} (A_\theta \rtimes_\sigma \mathbb{Z}_4)$. The range of $\vtr$
is fully determined for each $\theta$. (We conjecture that this
subspace is all of $H^{\ev}$.)
Keywords:C*algebras, Ktheory, automorphisms, rotation algebras, unbounded traces, Chern characters Categories:46L80, 46L40, 19K14 

11. CJM 2001 (vol 53 pp. 592)
 Perera, Francesc

Ideal Structure of Multiplier Algebras of Simple $C^*$algebras With Real Rank Zero
We give a description of the monoid of Murrayvon Neumann equivalence
classes of projections for multiplier algebras of a wide class of
$\sigma$unital simple $C^\ast$algebras $A$ with real rank zero and stable
rank one. The lattice of ideals of this monoid, which is known to be
crucial for understanding the ideal structure of the multiplier
algebra $\mul$, is therefore analyzed. In important cases it is shown
that, if $A$ has finite scale then the quotient of $\mul$ modulo any
closed ideal $I$ that properly contains $A$ has stable rank one. The
intricacy of the ideal structure of $\mul$ is reflected in the fact
that $\mul$ can have uncountably many different quotients, each one
having uncountably many closed ideals forming a chain with respect to
inclusion.
Keywords:$C^\ast$algebra, multiplier algebra, real rank zero, stable rank, refinement monoid Categories:46L05, 46L80, 06F05 

12. CJM 2001 (vol 53 pp. 325)
 Matui, Hiroki

Ext and OrderExt Classes of Certain Automorphisms of $C^*$Algebras Arising from Cantor Minimal Systems
Giordano, Putnam and Skau showed that the transformation group
$C^*$algebra arising from a Cantor minimal system is an $AT$algebra,
and classified it by its $K$theory. For approximately inner
automorphisms that preserve $C(X)$, we will determine their classes in
the Ext and OrderExt groups, and introduce a new invariant for the
closure of the topological full group. We will also prove that every
automorphism in the kernel of the homomorphism into the Ext group is
homotopic to an inner automorphism, which extends Kishimoto's result.
Categories:46L40, 46L80, 54H20 

13. CJM 2000 (vol 52 pp. 1164)
 Elliott, George A.; Villadsen, Jesper

Perforated Ordered $\K_0$Groups
A simple $\C^*$algebra is constructed for which the Murrayvon
Neumann equivalence classes of projections, with the usual
additioninduced by addition of orthogonal projectionsform the
additive semigroup
$$
\{0,2,3,\dots\}.
$$
(This is a particularly simple instance of the phenomenon of
perforation of the ordered $\K_0$group, which has long been known in
the commutative casefor instance, in the case of the
foursphereand was recently observed by the second author in the
case of a simple $\C^*$algebra.)
Categories:46L35, 46L80 

14. CJM 2000 (vol 52 pp. 633)
 Walters, Samuel G.

Chern Characters of Fourier Modules
Let $A_\theta$ denote the rotation algebrathe universal $C^\ast$algebra
generated by unitaries $U,V$ satisfying $VU=e^{2\pi i\theta}UV$, where
$\theta$ is a fixed real number. Let $\sigma$ denote the Fourier
automorphism of $A_\theta$ defined by $U\mapsto V$, $V\mapsto U^{1}$,
and let $B_\theta = A_\theta \rtimes_\sigma \mathbb{Z}/4\mathbb{Z}$ denote
the associated $C^\ast$crossed product. It is shown that there is a
canonical inclusion $\mathbb{Z}^9 \hookrightarrow K_0(B_\theta)$ for each
$\theta$ given by nine canonical modules. The unbounded trace functionals
of $B_\theta$ (yielding the Chern characters here) are calculated to obtain
the cyclic cohomology group of order zero $\HC^0(B_\theta)$ when
$\theta$ is irrational. The Chern characters of the nine modulesand more
importantly, the Fourier moduleare computed and shown to involve techniques
from the theory of Jacobi's theta functions. Also derived are explicit
equations connecting unbounded traces across strong Morita equivalence, which
turn out to be noncommutative extensions of certain theta function equations.
These results provide the basis for showing that for a dense $G_\delta$ set
of values of $\theta$ one has $K_0(B_\theta)\cong\mathbb{Z}^9$ and is
generated by the nine classes constructed here.
Keywords:$C^\ast$algebras, unbounded traces, Chern characters, irrational rotation algebras, $K$groups Categories:46L80, 46L40 

15. CJM 1998 (vol 50 pp. 673)
 Carey, Alan; Phillips, John

Fredholm modules and spectral flow
An {\it odd unbounded\/} (respectively, $p${\it summable})
{\it Fredholm module\/} for a unital Banach $\ast$algebra, $A$, is a pair $(H,D)$
where $A$ is represented on the Hilbert space, $H$, and $D$ is an unbounded
selfadjoint operator on $H$ satisfying:
\item{(1)} $(1+D^2)^{1}$ is compact (respectively, $\Trace\bigl((1+D^2)^{(p/2)}\bigr)
<\infty$), and
\item{(2)} $\{a\in A\mid [D,a]$ is bounded$\}$ is a dense
$\ast$subalgebra of $A$.
If $u$ is a unitary in the dense $\ast$subalgebra mentioned in (2) then
$$
uDu^\ast=D+u[D,u^{\ast}]=D+B
$$
where $B$ is a bounded selfadjoint operator. The path
$$
D_t^u:=(1t) D+tuDu^\ast=D+tB
$$
is a ``continuous'' path of unbounded selfadjoint ``Fredholm'' operators.
More precisely, we show that
$$
F_t^u:=D_t^u \bigl(1+(D_t^u)^2\bigr)^{{1\over 2}}
$$
is a normcontinuous path of (bounded) selfadjoint Fredholm
operators. The {\it spectral flow\/} of this path $\{F_t^u\}$ (or $\{
D_t^u\}$) is roughly speaking the net number of eigenvalues that pass
through $0$ in the positive direction as $t$ runs from $0$ to $1$.
This integer,
$$
\sf(\{D_t^u\}):=\sf(\{F_t^u\}),
$$
recovers the pairing of the $K$homology class $[D]$ with the $K$theory
class [$u$].
We use I.~M.~Singer's idea (as did E.~Getzler in the $\theta$summable
case) to consider the operator $B$ as a parameter in the Banach manifold,
$B_{\sa}(H)$, so that spectral flow can be exhibited as the integral
of a closed $1$form on this manifold. Now, for $B$ in our manifold,
any $X\in T_B(B_{\sa}(H))$ is given by an $X$ in $B_{\sa}(H)$ as the
derivative at $B$ along the curve $t\mapsto B+tX$ in the manifold.
Then we show that for $m$ a sufficiently large halfinteger:
$$
\alpha (X)={1\over {\tilde {C}_m}}\Tr \Bigl(X\bigl(1+(D+B)^2\bigr)^{m}\Bigr)
$$
is a closed $1$form. For any piecewise smooth path $\{D_t=D+B_t\}$ with
$D_0$ and $D_1$ unitarily equivalent we show that
$$
\sf(\{D_t\})={1\over {\tilde {C}_m}} \int_0^1\Tr \Bigl({d\over {dt}}
(D_t)(1+D_t^2)^{m}\Bigr)\,dt
$$
the integral of the $1$form $\alpha$. If $D_0$ and $D_1$ are not unitarily
equivalent, we must add a pair of correction terms to the righthand
side. We also prove a bounded finitely summable version of the form:
$$
\sf(\{F_t\})={1\over C_n}\int_0^1\Tr\Bigl({d\over dt}(F_t)(1F_t^2)^n\Bigr)\,dt
$$
for $n\geq{{p1}\over 2}$ an integer. The unbounded case is proved by
reducing to the bounded case via the map $D\mapsto F=D(1+D^2
)^{{1\over 2}}$. We prove simultaneously a type II version of our
results.
Categories:46L80, 19K33, 47A30, 47A55 

16. CJM 1997 (vol 49 pp. 963)
 Lin, Huaxin

Homomorphisms from $C(X)$ into $C^*$algebras
Let $A$ be a simple $C^*$algebra
with real rank zero, stable rank one and weakly
unperforated $K_0(A)$ of countable rank. We show that
a monomorphism $\phi\colon C(S^2) \to A$ can be approximated
pointwise by homomorphisms from $C(S^2)$ into $A$ with
finite dimensional range if and only if certain index
vanishes. In particular, we show that every homomorphism
$\phi$ from $C(S^2)$ into a UHFalgebra can be approximated
pointwise by homomorphisms from $C(S^2)$ into the UHFalgebra
with finite dimensional range. As an application, we show
that if $A$ is a simple $C^*$algebra of real rank zero
and is an inductive limit of matrices over $C(S^2)$ then
$A$ is an AFalgebra. Similar results for tori are also
obtained. Classification of ${\bf Hom}\bigl(C(X),A\bigr)$
for lower dimensional spaces is also studied.
Keywords:Homomorphism of $C(S^2)$, approximation, real, rank zero, classification Categories:46L05, 46L80, 46L35 
