1. CJM Online first
 Pasnicu, Cornel; Phillips, N. Christopher

The weak ideal property and topological dimension zero
Following up on previous work,
we prove a number of results for C*algebras
with the weak ideal property
or topological dimension zero,
and some results for C*algebras with related properties.
Some of the more important results include:
$\bullet$
The weak ideal property
implies topological dimension zero.
$\bullet$
For a separable C*algebra~$A$,
topological dimension zero is equivalent to
${\operatorname{RR}} ({\mathcal{O}}_2 \otimes A) = 0$,
to $D \otimes A$ having the ideal property
for some (or any) Kirchberg algebra~$D$,
and to $A$ being residually hereditarily in
the class of all C*algebras $B$ such that
${\mathcal{O}}_{\infty} \otimes B$
contains a nonzero projection.
$\bullet$
Extending the known result for ${\mathbb{Z}}_2$,
the classes of C*algebras
with residual (SP),
which are residually hereditarily (properly) infinite,
or which are purely infinite and have the ideal property,
are closed under crossed products by arbitrary actions
of abelian $2$groups.
$\bullet$
If $A$ and $B$ are separable,
one of them is exact,
$A$ has the ideal property,
and $B$ has the weak ideal property,
then $A \otimes_{\mathrm{min}} B$ has the weak ideal property.
$\bullet$
If $X$ is a totally disconnected locally compact Hausdorff space
and $A$ is a $C_0 (X)$algebra
all of whose fibers have one of the weak ideal property,
topological dimension zero,
residual (SP),
or the combination of pure infiniteness and the ideal property,
then $A$ also has the corresponding property
(for topological dimension zero, provided $A$ is separable).
$\bullet$
Topological dimension zero,
the weak ideal property,
and the ideal property
are all equivalent
for a substantial class of separable C*algebras including
all separable locally AH~algebras.
$\bullet$
The weak ideal property does not imply the ideal property
for separable $Z$stable C*algebras.
We give other related results,
as well as counterexamples to several other statements
one might hope for.
Keywords:ideal property, weak ideal property, topological dimension zero, $C_0 (X)$algebra, purely infinite C*algebra Category:46L05 

2. CJM Online first
 Bosa, Joan; Petzka, Henning

Comparison Properties of the Cuntz semigroup and applications to C*algebras
We study comparison properties in the category $\mathrm{Cu}$ aiming to
lift results to the C*algebraic setting. We introduce a new
comparison property and relate it to both the CFP and $\omega$comparison.
We show differences of all properties by providing examples,
which suggest that the corona factorization for C*algebras might
allow for both finite and infinite projections. In addition,
we show that R{\o}rdam's simple, nuclear C*algebra with a finite
and an infinite projection does not have the CFP.
Keywords:classification of C*algebras, cuntz semigroup Categories:46L35, 06F05, 46L05, 19K14 

3. CJM Online first
 Ng, P. W.; Skoufranis, P.

Closed convex hulls of unitary orbits in certain simple real rank zero C$^*$algebras
In this paper, we characterize the closures of convex hulls of
unitary orbits of selfadjoint operators in unital, separable,
simple C$^*$algebras with nontrivial tracial simplex, real
rank zero, stable rank one, and strict comparison of projections
with respect to tracial states. In addition, an upper bound
for the number of unitary conjugates in a convex combination
needed to approximate a selfadjoint are obtained.
Keywords:convex hull of unitary orbits, real rank zero C*algebras simple, eigenvalue function, majorization Category:46L05 

4. CJM 2016 (vol 69 pp. 373)
 Kaftal, Victor; Ng, Ping Wong; Zhang, Shuang

Strict Comparison of Positive Elements in Multiplier Algebras
Main result: If a C*algebra $\mathcal{A}$ is simple, $\sigma$unital,
has finitely many extremal traces, and has strict comparison
of positive elements by traces, then its multiplier algebra
$\operatorname{\mathcal{M}}(\mathcal{A})$
also has strict comparison of positive elements by traces. The
same results holds if ``finitely many extremal traces" is replaced
by ``quasicontinuous scale".
A key ingredient in the proof is that every positive element
in the multiplier algebra of an arbitrary $\sigma$unital C*algebra
can be approximated by a bidiagonal series.
An application of strict comparison: If $\mathcal{A}$ is a simple separable
stable C*algebra with real rank zero, stable rank one, and
strict comparison of positive elements by traces, then whether
a positive element is a positive linear combination of projections
is determined by the trace values of its range projection.
Keywords:strict comparison, bidiagonal form, positive combinations Categories:46L05, 46L35, 46L45, 47C15 

5. CJM 2015 (vol 67 pp. 990)
 Amini, Massoud; Elliott, George A.; Golestani, Nasser

The Category of Bratteli Diagrams
A category structure for Bratteli diagrams is proposed and a
functor from
the category of AF algebras to the category of Bratteli diagrams
is
constructed. Since isomorphism of Bratteli diagrams in this
category coincides
with Bratteli's notion of equivalence, we obtain in particular
a functorial formulation of Bratteli's
classification of AF algebras (and at the same time, of Glimm's
classification of UHF~algebras).
It is shown that the three approaches
to classification of AF~algebras, namely, through Bratteli diagrams,
Ktheory, and
abstract classifying categories, are essentially the same
from a categorical point of view.
Keywords:C$^{*}$algebra, category, functor, AF algebra, dimension group, Bratteli diagram Categories:46L05, 46L35, 46M15 

6. CJM 2015 (vol 67 pp. 481)
 an Huef, Astrid; Archbold, Robert John

The C*algebras of Compact Transformation Groups
We investigate the representation theory of the
crossedproduct $C^*$algebra associated to a compact group $G$
acting on a locally compact space $X$ when the stability subgroups
vary discontinuously.
Our main result applies when $G$ has a principal stability subgroup or
$X$ is locally of finite $G$orbit type. Then the upper multiplicity
of the representation of the crossed product induced from an
irreducible representation $V$ of a stability subgroup is obtained by
restricting $V$ to a certain closed subgroup of the stability subgroup
and taking the maximum of the multiplicities of the irreducible
summands occurring in the restriction of $V$. As a corollary we obtain
that when the trivial subgroup is a principal stability subgroup, the
crossed product is a Fell algebra if and only if every stability
subgroup is abelian. A second corollary is that the $C^*$algebra of
the motion group $\mathbb{R}^n\rtimes \operatorname{SO}(n)$ is a Fell algebra. This uses
the classical branching theorem for the special orthogonal group
$\operatorname{SO}(n)$ with respect to $\operatorname{SO}(n1)$. Since proper transformation
groups are locally induced from the actions of compact groups, we
describe how some of our results can be extended to transformation
groups that are locally proper.
Keywords:compact transformation group, proper action, spectrum of a C*algebra, multiplicity of a representation, crossedproduct C*algebra, continuoustrace C*algebra, Fell algebra Categories:46L05, 46L55 

7. CJM 2015 (vol 67 pp. 870)
 Lin, Huaxin

Minimal Dynamical Systems on Connected Odd Dimensional Spaces
Let $\beta\colon S^{2n+1}\to S^{2n+1}$ be a minimal homeomorphism ($n\ge 1$). We show that
the crossed product $C(S^{2n+1})\rtimes_\beta \mathbb{Z}$ has rational tracial rank at most one.
Let $\Omega$ be a connected compact metric space with finite covering dimension and
with $H^1(\Omega, \mathbb{Z})=\{0\}.$ Suppose that $K_i(C(\Omega))=\mathbb{Z}\oplus G_i,$ where $G_i$ is a finite abelian group, $i=0,1.$
Let $\beta\colon \Omega\to\Omega$ be a minimal homeomorphism. We also show that
$A=C(\Omega)\rtimes_\beta\mathbb{Z}$ has rational tracial rank at most one and is
classifiable.
In particular, this applies to the minimal dynamical systems on
odd dimensional real projective spaces.
This is done by studying minimal homeomorphisms on $X\times \Omega,$ where
$X$ is the Cantor set.
Keywords:minimal dynamical systems Categories:46L35, 46L05 

8. CJM 2014 (vol 67 pp. 404)
 Hua, Jiajie; Lin, Huaxin

Rotation Algebras and the Exel Trace Formula
We found that if $u$ and $v$ are any two unitaries in
a unital $C^*$algebra with $\uvvu\\lt 2$ and $uvu^*v^*$ commutes with
$u$ and $v,$ then the $C^*$subalgebra $A_{u,v}$ generated by $u$ and
$v$ is isomorphic to a quotient of some rotation algebra $A_\theta$
provided that $A_{u,v}$ has a unique tracial state.
We also found that the Exel trace formula holds in any unital
$C^*$algebra.
Let $\theta\in (1/2, 1/2)$ be a real number. We prove the
following:
For any $\epsilon\gt 0,$ there exists $\delta\gt 0$ satisfying the following:
if $u$ and $v$ are two unitaries in any unital simple $C^*$algebra
$A$ with tracial rank zero such that
\[
\uve^{2\pi i\theta}vu\\lt \delta
\text{ and }
{1\over{2\pi i}}\tau(\log(uvu^*v^*))=\theta,
\]
for all tracial state $\tau$ of $A,$ then there exists a pair
of unitaries $\tilde{u}$ and $\tilde{v}$ in $A$
such that
\[
\tilde{u}\tilde{v}=e^{2\pi i\theta} \tilde{v}\tilde{u},\,\,
\u\tilde{u}\\lt \epsilon
\text{ and }
\v\tilde{v}\\lt \epsilon.
\]
Keywords:rotation algebras, Exel trace formula Category:46L05 

9. CJM 2013 (vol 66 pp. 596)
 Eilers, Søren; Restorff, Gunnar; Ruiz, Efren

The Ordered $K$theory of a Full Extension
Let $\mathfrak{A}$ be a $C^{*}$algebra with real rank zero which has
the stable weak cancellation property. Let $\mathfrak{I}$ be an ideal
of $\mathfrak{A}$ such that $\mathfrak{I}$ is stable and satisfies the
corona factorization property. We prove that
$
0 \to \mathfrak{I} \to \mathfrak{A} \to \mathfrak{A} / \mathfrak{I} \to 0
$
is a full extension if and only if the extension is stenotic and
$K$lexicographic. {As an immediate application, we extend the
classification result for graph $C^*$algebras obtained by Tomforde
and the first named author to the general nonunital case. In
combination with recent results by Katsura, Tomforde, West and the
first author, our result may also be used to give a purely
$K$theoretical description of when an essential extension of two
simple and stable graph $C^*$algebras is again a graph
$C^*$algebra.}
Keywords:classification, extensions, graph algebras Categories:46L80, 46L35, 46L05 

10. CJM 2013 (vol 65 pp. 783)
 Garcés, Jorge J.; Peralta, Antonio M.

Generalised Triple Homomorphisms and Derivations
We introduce generalised triple homomorphism between Jordan Banach
triple systems as a concept which extends the notion of generalised homomorphism between
Banach algebras given by K. Jarosz and B.E. Johnson in 1985 and 1987, respectively.
We prove that every generalised triple homomorphism between JB$^*$triples
is automatically continuous. When particularised to C$^*$algebras, we rediscover
one of the main theorems established by B.E. Johnson. We shall also consider generalised
triple derivations from a Jordan Banach triple $E$ into a Jordan Banach triple $E$module,
proving that every generalised triple derivation from a JB$^*$triple $E$ into itself or into $E^*$
is automatically continuous.
Keywords:generalised homomorphism, generalised triple homomorphism, generalised triple derivation, Banach algebra, Jordan Banach triple, C$^*$algebra, JB$^*$triple Categories:46L05, 46L70, 47B48, 17C65, 46K70, 46L40, 47B47, 47B49 

11. CJM 2012 (vol 65 pp. 481)
12. CJM 2012 (vol 65 pp. 52)
13. CJM 2011 (vol 64 pp. 755)
 Brown, Lawrence G.; Lee, Hyun Ho

Homotopy Classification of Projections in the Corona Algebra of a Nonsimple $C^*$algebra
We study projections in the corona algebra of $C(X)\otimes K$, where K
is the $C^*$algebra of compact operators on a separable infinite
dimensional Hilbert space and $X=[0,1],[0,\infty),(\infty,\infty)$,
or $[0,1]/\{ 0,1 \}$. Using BDF's essential codimension, we determine
conditions for a projection in the corona algebra to be liftable to a
projection in the multiplier algebra. We also determine the
conditions for two projections to be equal in $K_0$, Murrayvon
Neumann equivalent, unitarily equivalent, or homotopic. In light of
these characterizations, we construct examples showing that the
equivalence notions above are all distinct.
Keywords:essential codimension, continuous field of Hilbert spaces, Corona algebra Categories:46L05, 46L80 

14. CJM 2011 (vol 64 pp. 544)
15. CJM 2011 (vol 64 pp. 573)
 Nawata, Norio

Fundamental Group of Simple $C^*$algebras with Unique Trace III
We introduce the fundamental group ${\mathcal F}(A)$ of
a simple $\sigma$unital $C^*$algebra $A$ with unique (up to scalar multiple)
densely defined lower semicontinuous trace.
This is a generalization of ``Fundamental Group of Simple
$C^*$algebras with Unique Trace I and II'' by Nawata and Watatani.
Our definition in this paper makes sense for stably projectionless $C^*$algebras.
We show that there exist separable stably projectionless $C^*$algebras such that
their fundamental groups are equal to $\mathbb{R}_+^\times$
by using the classification theorem of Razak and Tsang.
This is a contrast to the unital case in Nawata and Watatani.
This study is motivated by the work of Kishimoto and Kumjian.
Keywords:fundamental group, Picard group, Hilbert module, countable basis, stably projectionless algebra, dimension function Categories:46L05, 46L08, 46L35 

16. CJM 2011 (vol 63 pp. 381)
 Ji, Kui ; Jiang, Chunlan

A Complete Classification of AI Algebras with the Ideal Property
Let $A$ be an AI algebra; that is, $A$ is the $\mbox{C}^{*}$algebra inductive limit
of a sequence
$$
A_{1}\stackrel{\phi_{1,2}}{\longrightarrow}A_{2}\stackrel{\phi_{2,3}}{\longrightarrow}A_{3}
\longrightarrow\cdots\longrightarrow A_{n}\longrightarrow\cdots,
$$
where
$A_{n}=\bigoplus_{i=1}^{k_n}M_{[n,i]}(C(X^{i}_n))$,
$X^{i}_n$ are $[0,1]$, $k_n$, and
$[n,i]$ are positive integers.
Suppose that $A$ has the
ideal property: each closed twosided ideal of $A$ is generated by
the projections inside the ideal, as a closed twosided ideal.
In this article, we give a complete classification of AI algebras with the ideal property.
Keywords:AI algebras, Kgroup, tracial state, ideal property, classification Categories:46L35, 19K14, 46L05, 46L08 

17. CJM 2010 (vol 62 pp. 889)
 Xia, Jingbo

Singular Integral Operators and Essential Commutativity on the Sphere
Let ${\mathcal T}$ be the $C^\ast $algebra generated by the Toeplitz operators $\{T_\varphi : \varphi \in L^\infty (S,d\sigma )\}$ on the Hardy space $H^2(S)$ of the unit sphere in $\mathbf{C}^n$. It is well known that ${\mathcal T}$ is contained in the essential commutant of $\{T_\varphi : \varphi \in \operatorname{VMO}\cap L^\infty (S,d\sigma )\}$. We show that the essential commutant of $\{T_\varphi : \varphi \in \operatorname{VMO}\cap L^\infty (S,d\sigma )\}$ is strictly larger than ${\mathcal T}$.
Categories:32A55, 46L05, 47L80 

18. CJM 2009 (vol 61 pp. 1239)
 Davidson, Kenneth R.; Yang, Dilian

Periodicity in Rank 2 Graph Algebras
Kumjian and Pask introduced an aperiodicity condition
for higher rank graphs.
We present a detailed analysis of when this occurs
in certain rank 2 graphs.
When the algebra is aperiodic, we give another proof
of the simplicity of $\mathrm{C}^*(\mathbb{F}^+_{\theta})$.
The periodic $\mathrm{C}^*$algebras are characterized, and it is shown
that $\mathrm{C}^*(\mathbb{F}^+_{\theta}) \simeq
\mathrm{C}(\mathbb{T})\otimes\mathfrak{A}$
where $\mathfrak{A}$ is a simple $\mathrm{C}^*$algebra.
Keywords:higher rank graph, aperiodicity condition, simple $\mathrm{C}^*$algebra, expectation Categories:47L55, 47L30, 47L75, 46L05 

19. CJM 2008 (vol 60 pp. 975)
 Boca, Florin P.

An AF Algebra Associated with the Farey Tessellation
We associate with the Farey tessellation of the upper
halfplane an
AF algebra $\AA$ encoding the ``cutting sequences'' that define
vertical geodesics.
The EffrosShen AF algebras arise as quotients
of $\AA$. Using the path algebra model for AF algebras we construct, for
each $\tau \in \big(0,\frac{1}{4}\big]$, projections $(E_n)$ in
$\AA$ such that $E_n E_{n\pm 1}E_n \leq \tau E_n$.
Categories:46L05, 11A55, 11B57, 46L55, 37E05, 82B20 

20. CJM 2007 (vol 59 pp. 343)
 Lin, Huaxin

Weak Semiprojectivity in Purely Infinite Simple $C^*$Algebras
Let $A$ be a separable amenable purely infinite simple \CA which
satisfies the Universal Coefficient Theorem. We prove that $A$ is
weakly semiprojective if and only if $K_i(A)$ is a countable
direct sum of finitely generated groups ($i=0,1$). Therefore, if
$A$ is such a \CA, for any $\ep>0$ and any finite subset ${\mathcal
F}\subset A$ there exist $\dt>0$ and a finite subset ${\mathcal
G}\subset A$ satisfying the following: for any contractive
positive linear map $L: A\to B$ (for any \CA $B$) with $
\L(ab)L(a)L(b)\<\dt$ for $a, b\in {\mathcal G}$
there exists a homomorphism $h\from A\to B$ such that
$ \h(a)L(a)\<\ep$ for $a\in {\mathcal F}$.
Keywords:weakly semiprojective, purely infinite simple $C^*$algebras Categories:46L05, 46L80 

21. CJM 2006 (vol 58 pp. 1268)
 Sims, Aidan

GaugeInvariant Ideals in the $C^*$Algebras of Finitely Aligned HigherRank Graphs
We produce a complete description of the lattice of gaugeinvariant
ideals in $C^*(\Lambda)$ for a finitely aligned $k$graph
$\Lambda$. We provide a condition on $\Lambda$ under which every ideal
is gaugeinvariant. We give conditions on $\Lambda$ under which
$C^*(\Lambda)$ satisfies the hypotheses of the KirchbergPhillips
classification theorem.
Keywords:Graphs as categories, graph algebra, $C^*$algebra Category:46L05 

22. CJM 2006 (vol 58 pp. 1144)
 Hamana, Masamichi

Partial $*$Automorphisms, Normalizers, and Submodules in Monotone Complete $C^*$Algebras
For monotone complete $C^*$algebras
$A\subset B$ with $A$ contained in $B$ as a monotone closed
$C^*$subalgebra, the relation $X = AsA$
gives a bijection between the set of all
monotone closed linear subspaces $X$ of $B$ such that
$AX + XA \subset X$
and
$XX^* + X^*X \subset A$
and a set of certain partial
isometries $s$ in the ``normalizer" of $A$ in $B$,
and similarly for the map $s \mapsto \Ad s$
between the latter set and a set of certain ``partial $*$automorphisms"
of $A$.
We introduce natural inverse semigroup
structures in the set of such $X$'s and the set of
partial $*$automorphisms of $A$, modulo a certain relation, so that
the composition of these maps induces an inverse semigroup
homomorphism between them.
For a large enough $B$ the homomorphism becomes surjective and
all the partial $*$automorphisms of
$A$ are realized via partial isometries in $B$.
In particular, the inverse semigroup associated with
a type ${\rm II}_1$ von Neumann factor,
modulo the outer automorphism group,
can be viewed as the fundamental group of the factor.
We also consider the $C^*$algebra version of these results.
Categories:46L05, 46L08, 46L40, 20M18 

23. CJM 2005 (vol 57 pp. 983)
24. CJM 2005 (vol 57 pp. 351)
 Lin, Huaxin

Extensions by Simple $C^*$Algebras: Quasidiagonal Extensions
Let $A$ be an amenable separable $C^*$algebra and $B$ be a nonunital
but $\sigma$unital simple $C^*$algebra with continuous scale.
We show that two essential extensions
$\tau_1$ and $\tau_2$ of $A$ by $B$ are approximately
unitarily equivalent if and only if
$$
[\tau_1]=[\tau_2] \text{ in } KL(A, M(B)/B).
$$
If $A$ is assumed to satisfy the Universal Coefficient Theorem,
there is a bijection from approximate unitary equivalence
classes of the above mentioned extensions to
$KL(A, M(B)/B)$.
Using $KL(A, M(B)/B)$, we compute exactly when an essential extension
is quasidiagonal. We show that quasidiagonal extensions
may not be approximately trivial.
We also study the approximately trivial extensions.
Keywords:Extensions, Simple $C^*$algebras Categories:46L05, 46L35 

25. CJM 2005 (vol 57 pp. 17)
 Bédos, Erik; Conti, Roberto; Tuset, Lars

On Amenability and CoAmenability of Algebraic Quantum Groups and Their Corepresentations
We introduce and study several notions of amenability for unitary
corepresentations and $*$representations of algebraic quantum groups,
which may be used to characterize amenability and coamenability for
such quantum groups. As a background for this study, we investigate
the associated tensor C$^{*}$categories.
Keywords:quantum group, amenability Categories:46L05, 46L65, 22D10, 22D25, 43A07, 43A65, 58B32 
