1. CJM Online first
 Fricain, Emmanuel; Hartmann, Andreas; Ross, William T.

Range spaces of coanalytic Toeplitz operators
In this paper we discuss the range of a coanalytic Toeplitz
operator. These range spaces are closely related to de BrangesRovnyak
spaces (in some cases they are equal as sets). In order to understand
its structure, we explore when
the range space decomposes into the range of an associated analytic
Toeplitz operator and an identifiable orthogonal complement.
For certain cases, we compute this orthogonal complement in terms
of the kernel of a certain Toeplitz operator on the Hardy space
where we focus on when this kernel is a model space (backward
shift invariant subspace).
In the spirit of AhernClark, we also discuss the nontangential
boundary behavior in these range spaces. These results give us
further insight into the description of the range of a coanalytic
Toeplitz operator as well as its orthogonal decomposition. Our
AhernClark type results, which are stated in a general abstract
setting, will also have applications to related subHardy Hilbert
spaces of analytic functions such as the de BrangesRovnyak spaces
and the harmonically weighted Dirichlet spaces.
Keywords:Toeplitz operator, Hardy space, range space, de BrangesRovnyak space, boundary behavior, kernel function, nonextreme point, corona pair Categories:30J05, 30H10, 46E22 

2. CJM 2017 (vol 69 pp. 1312)
 Fricain, Emmanuel; Rupam, Rishika

On Asymptotically Orthonormal Sequences
An asymptotically orthonormal sequence is a sequence which is
"nearly" orthonormal in the sense that it satisfies the Parseval
equality up to two constants close to one. In this paper, we
explore such sequences formed by normalized reproducing kernels
for model spaces and de BrangesRovnyak spaces.
Keywords:function space, de BrangesRovnyak and model space, reproducing kernel, asymptotically orthonormal sequence Categories:30J05, 30H10, 46E22 

3. CJM 2016 (vol 69 pp. 54)
 Hartz, Michael

On the Isomorphism Problem for Multiplier Algebras of NevanlinnaPick Spaces
We continue the investigation of the isomorphism problem for
multiplier algebras of reproducing kernel
Hilbert spaces with the complete NevanlinnaPick property.
In contrast to previous work in this area,
we do not study these spaces by identifying them with restrictions
of a universal space, namely the DruryArveson space.
Instead, we work directly with the Hilbert spaces and their
reproducing kernels. In particular,
we show that two multiplier algebras of NevanlinnaPick spaces
on the same set are equal if and only if the Hilbert
spaces are equal. Most of the article is devoted to the study
of a special class of
complete NevanlinnaPick spaces on homogeneous varieties. We
provide a complete
answer to the question of when two multiplier algebras of spaces
of this type
are algebraically or isometrically isomorphic. This generalizes
results of Davidson, Ramsey, Shalit,
and the author.
Keywords:nonselfadjoint operator algebras, reproducing kernel Hilbert spaces, multiplier algebra, NevanlinnaPick kernels, isomorphism problem Categories:47L30, 46E22, 47A13 

4. CJM 2009 (vol 61 pp. 503)
 Baranov, Anton; Woracek, Harald

Subspaces of de~Branges Spaces Generated by Majorants
For a given de~Branges space $\mc H(E)$ we investigate
de~Branges subspaces defined in terms of majorants
on the real axis. If $\omega$ is a nonnegative function on $\mathbb R$,
we consider the subspace
\[
\mc R_\omega(E)=\clos_{\mc H(E)} \big\{F\in\mc H(E):
\text{ there exists } C>0:
E^{1} F\leq C\omega \mbox{ on }{\mathbb R}\big\}
.
\]
We show that $\mc R_\omega(E)$ is a de~Branges subspace and
describe all subspaces of this form. Moreover,
we give a criterion for the existence of positive minimal majorants.
Keywords:de~Branges subspace, majorant, BeurlingMalliavin Theorem Categories:46E20, 30D15, 46E22 

5. CJM 1998 (vol 50 pp. 658)
 Symesak, Frédéric

Hankel operators on pseudoconvex domains of finite type in ${\Bbb C}^2$
The aim of this paper is to study small Hankel operators $h$ on the
Hardy space or on weighted Bergman spaces, where $\Omega$ is a
finite type domain in ${\Bbbvii C}^2$ or a strictly pseudoconvex
domain in ${\Bbbvii C}^n$. We give a sufficient condition on the
symbol $f$ so that $h$ belongs to the Schatten class ${\cal S}_p$,
$1\le p<+\infty$.
Categories:32A37, 47B35, 47B10, 46E22 
