Canadian Mathematical Society
Canadian Mathematical Society
  location:  Publicationsjournals
Search results

Search: MSC category 46B28 ( Spaces of operators; tensor products; approximation properties [See also 46A32, 46M05, 47L05, 47L20] )

  Expand all        Collapse all Results 1 - 4 of 4

1. CJM 2017 (vol 70 pp. 53)

Dantas, Sheldon; García, Domingo; Maestre, Manuel; Martín, Miguel
The Bishop-Phelps-Bollobás property for compact operators
We study the Bishop-Phelps-Bollobás property (BPBp for short) for compact operators. We present some abstract techniques which allows to carry the BPBp for compact operators from sequence spaces to function spaces. As main applications, we prove the following results. Let $X$, $Y$ be Banach spaces. If $(c_0,Y)$ has the BPBp for compact operators, then so do $(C_0(L),Y)$ for every locally compact Hausdorff topological space $L$ and $(X,Y)$ whenever $X^*$ is isometrically isomorphic to $\ell_1$. If $X^*$ has the Radon-Nikodým property and $(\ell_1(X),Y)$ has the BPBp for compact operators, then so does $(L_1(\mu,X),Y)$ for every positive measure $\mu$; as a consequence, $(L_1(\mu,X),Y)$ has the the BPBp for compact operators when $X$ and $Y$ are finite-dimensional or $Y$ is a Hilbert space and $X=c_0$ or $X=L_p(\nu)$ for any positive measure $\nu$ and $1\lt p\lt \infty$. For $1\leq p \lt \infty$, if $(X,\ell_p(Y))$ has the BPBp for compact operators, then so does $(X,L_p(\mu,Y))$ for every positive measure $\mu$ such that $L_1(\mu)$ is infinite-dimensional. If $(X,Y)$ has the BPBp for compact operators, then so do $(X,L_\infty(\mu,Y))$ for every $\sigma$-finite positive measure $\mu$ and $(X,C(K,Y))$ for every compact Hausdorff topological space $K$.

Keywords:Bishop-Phelps theorem, Bishop-Phelps-Bollobás property, norm attaining operator, compact operator
Categories:46B04, 46B20, 46B28, 46B25, 46E40

2. CJM 2011 (vol 63 pp. 1161)

Neuwirth, Stefan; Ricard, Éric
Transfer of Fourier Multipliers into Schur Multipliers and Sumsets in a Discrete Group
We inspect the relationship between relative Fourier multipliers on noncommutative Lebesgue-Orlicz spaces of a discrete group $\varGamma$ and relative Toeplitz-Schur multipliers on Schatten-von-Neumann-Orlicz classes. Four applications are given: lacunary sets, unconditional Schauder bases for the subspace of a Lebesgue space determined by a given spectrum $\varLambda\subseteq\varGamma$, the norm of the Hilbert transform and the Riesz projection on Schatten-von-Neumann classes with exponent a power of 2, and the norm of Toeplitz Schur multipliers on Schatten-von-Neumann classes with exponent less than 1.

Keywords:Fourier multiplier, Toeplitz Schur multiplier, lacunary set, unconditional approximation property, Hilbert transform, Riesz projection
Categories:47B49, 43A22, 43A46, 46B28

3. CJM 2007 (vol 59 pp. 614)

Labuschagne, C. C. A.
Preduals and Nuclear Operators Associated with Bounded, $p$-Convex, $p$-Concave and Positive $p$-Summing Operators
We use Krivine's form of the Grothendieck inequality to renorm the space of bounded linear maps acting between Banach lattices. We construct preduals and describe the nuclear operators associated with these preduals for this renormed space of bounded operators as well as for the spaces of $p$-convex, $p$-concave and positive $p$-summing operators acting between Banach lattices and Banach spaces. The nuclear operators obtained are described in terms of factorizations through classical Banach spaces via positive operators.

Keywords:$p$-convex operator, $p$-concave operator, $p$-summing operator, Banach space, Banach lattice, nuclear operator, sequence space
Categories:46B28, 47B10, 46B42, 46B45

4. CJM 2005 (vol 57 pp. 1249)

Lindström, Mikael; Saksman, Eero; Tylli, Hans-Olav
Strictly Singular and Cosingular Multiplications
Let $L(X)$ be the space of bounded linear operators on the Banach space $X$. We study the strict singularity andcosingularity of the two-sided multiplication operators $S \mapsto ASB$ on $L(X)$, where $A,B \in L(X)$ are fixed bounded operators and $X$ is a classical Banach space. Let $1
Categories:47B47, 46B28

© Canadian Mathematical Society, 2018 :