Canadian Mathematical Society
Canadian Mathematical Society
  location:  Publicationsjournals
Search results

Search: MSC category 46 ( Functional analysis )

  Expand all        Collapse all Results 26 - 50 of 172

26. CJM 2016 (vol 68 pp. 876)

Ostrovskii, Mikhail; Randrianantoanina, Beata
Metric Spaces Admitting Low-distortion Embeddings into All $n$-dimensional Banach Spaces
For a fixed $K\gg 1$ and $n\in\mathbb{N}$, $n\gg 1$, we study metric spaces which admit embeddings with distortion $\le K$ into each $n$-dimensional Banach space. Classical examples include spaces embeddable into $\log n$-dimensional Euclidean spaces, and equilateral spaces. We prove that good embeddability properties are preserved under the operation of metric composition of metric spaces. In particular, we prove that $n$-point ultrametrics can be embedded with uniformly bounded distortions into arbitrary Banach spaces of dimension $\log n$. The main result of the paper is a new example of a family of finite metric spaces which are not metric compositions of classical examples and which do embed with uniformly bounded distortion into any Banach space of dimension $n$. This partially answers a question of G. Schechtman.

Keywords:basis constant, bilipschitz embedding, diamond graph, distortion, equilateral set, ultrametric
Categories:46B85, 05C12, 30L05, 46B15, 52A21

27. CJM 2016 (vol 68 pp. 309)

Daws, Matthew
Categorical Aspects of Quantum Groups: Multipliers and Intrinsic Groups
We show that the assignment of the (left) completely bounded multiplier algebra $M_{cb}^l(L^1(\mathbb G))$ to a locally compact quantum group $\mathbb G$, and the assignment of the intrinsic group, form functors between appropriate categories. Morphisms of locally compact quantum groups can be described by Hopf $*$-homomorphisms between universal $C^*$-algebras, by bicharacters, or by special sorts of coactions. We show that the whole theory of completely bounded multipliers can be lifted to the universal $C^*$-algebra level, and that then the different pictures of both multipliers (reduced, universal, and as centralisers) and morphisms interact in extremely natural ways. The intrinsic group of a quantum group can be realised as a class of multipliers, and so our techniques immediately apply. We also show how to think of the intrinsic group using the universal $C^*$-algebra picture, and then, again, show how the differing views on the intrinsic group interact naturally with morphisms. We show that the intrinsic group is the ``maximal classical'' quantum subgroup of a locally compact quantum group, show that it is even closed in the strong Vaes sense, and that the intrinsic group functor is an adjoint to the inclusion functor from locally compact groups to quantum groups.

Keywords:locally compact quantum group, morphism, intrinsic group, multiplier, centraliser
Categories:20G42, 22D25, 43A22, 43A35, 43A95, 46L52, 46L89, 47L25

28. CJM 2015 (vol 69 pp. 408)

Klep, Igor; Špenko, Špela
Free Function Theory Through Matrix Invariants
This paper concerns free function theory. Free maps are free analogs of analytic functions in several complex variables, and are defined in terms of freely noncommuting variables. A function of $g$ noncommuting variables is a function on $g$-tuples of square matrices of all sizes that respects direct sums and simultaneous conjugation. Examples of such maps include noncommutative polynomials, noncommutative rational functions and convergent noncommutative power series. In sharp contrast to the existing literature in free analysis, this article investigates free maps \emph{with involution} -- free analogs of real analytic functions. To get a grip on these, techniques and tools from invariant theory are developed and applied to free analysis. Here is a sample of the results obtained. A characterization of polynomial free maps via properties of their finite-dimensional slices is presented and then used to establish power series expansions for analytic free maps about scalar and non-scalar points; the latter are series of generalized polynomials for which an invariant-theoretic characterization is given. Furthermore, an inverse and implicit function theorem for free maps with involution is obtained. Finally, with a selection of carefully chosen examples it is shown that free maps with involution do not exhibit strong rigidity properties enjoyed by their involution-free counterparts.

Keywords:free algebra, free analysis, invariant theory, polynomial identities, trace identities, concomitants, analytic maps, inverse function theorem, generalized polynomials
Categories:16R30, 32A05, 46L52, 15A24, 47A56, 15A24, 46G20

29. CJM 2015 (vol 67 pp. 1290)

Charlesworth, Ian; Nelson, Brent; Skoufranis, Paul
On Two-faced Families of Non-commutative Random Variables
We demonstrate that the notions of bi-free independence and combinatorial-bi-free independence of two-faced families are equivalent using a diagrammatic view of bi-non-crossing partitions. These diagrams produce an operator model on a Fock space suitable for representing any two-faced family of non-commutative random variables. Furthermore, using a Kreweras complement on bi-non-crossing partitions we establish the expected formulas for the multiplicative convolution of a bi-free pair of two-faced families.

Keywords:free probability, operator algebras, bi-free

30. CJM 2015 (vol 67 pp. 990)

Amini, Massoud; Elliott, George A.; Golestani, Nasser
The Category of Bratteli Diagrams
A category structure for Bratteli diagrams is proposed and a functor from the category of AF algebras to the category of Bratteli diagrams is constructed. Since isomorphism of Bratteli diagrams in this category coincides with Bratteli's notion of equivalence, we obtain in particular a functorial formulation of Bratteli's classification of AF algebras (and at the same time, of Glimm's classification of UHF~algebras). It is shown that the three approaches to classification of AF~algebras, namely, through Bratteli diagrams, K-theory, and abstract classifying categories, are essentially the same from a categorical point of view.

Keywords:C$^{*}$-algebra, category, functor, AF algebra, dimension group, Bratteli diagram
Categories:46L05, 46L35, 46M15

31. CJM 2015 (vol 67 pp. 481)

an Huef, Astrid; Archbold, Robert John
The C*-algebras of Compact Transformation Groups
We investigate the representation theory of the crossed-product $C^*$-algebra associated to a compact group $G$ acting on a locally compact space $X$ when the stability subgroups vary discontinuously. Our main result applies when $G$ has a principal stability subgroup or $X$ is locally of finite $G$-orbit type. Then the upper multiplicity of the representation of the crossed product induced from an irreducible representation $V$ of a stability subgroup is obtained by restricting $V$ to a certain closed subgroup of the stability subgroup and taking the maximum of the multiplicities of the irreducible summands occurring in the restriction of $V$. As a corollary we obtain that when the trivial subgroup is a principal stability subgroup, the crossed product is a Fell algebra if and only if every stability subgroup is abelian. A second corollary is that the $C^*$-algebra of the motion group $\mathbb{R}^n\rtimes \operatorname{SO}(n)$ is a Fell algebra. This uses the classical branching theorem for the special orthogonal group $\operatorname{SO}(n)$ with respect to $\operatorname{SO}(n-1)$. Since proper transformation groups are locally induced from the actions of compact groups, we describe how some of our results can be extended to transformation groups that are locally proper.

Keywords:compact transformation group, proper action, spectrum of a C*-algebra, multiplicity of a representation, crossed-product C*-algebra, continuous-trace C*-algebra, Fell algebra
Categories:46L05, 46L55

32. CJM 2015 (vol 67 pp. 759)

Carey, Alan L; Gayral, Victor; Phillips, John; Rennie, Adam; Sukochev, Fedor
Spectral Flow for Nonunital Spectral Triples
We prove two results about nonunital index theory left open in a previous paper. The first is that the spectral triple arising from an action of the reals on a $C^*$-algebra with invariant trace satisfies the hypotheses of the nonunital local index formula. The second result concerns the meaning of spectral flow in the nonunital case. For the special case of paths arising from the odd index pairing for smooth spectral triples in the nonunital setting we are able to connect with earlier approaches to the analytic definition of spectral flow.

Keywords:spectral triple, spectral flow, local index theorem

33. CJM 2015 (vol 67 pp. 827)

Kaniuth, Eberhard
The Bochner-Schoenberg-Eberlein Property and Spectral Synthesis for Certain Banach Algebra Products
Associated with two commutative Banach algebras $A$ and $B$ and a character $\theta$ of $B$ is a certain Banach algebra product $A\times_\theta B$, which is a splitting extension of $B$ by $A$. We investigate two topics for the algebra $A\times_\theta B$ in relation to the corresponding ones of $A$ and $B$. The first one is the Bochner-Schoenberg-Eberlein property and the algebra of Bochner-Schoenberg-Eberlein functions on the spectrum, whereas the second one concerns the wide range of spectral synthesis problems for $A\times_\theta B$.

Keywords:commutative Banach algebra, splitting extension, Gelfand spectrum, set of synthesis, weak spectral set, multiplier algebra, BSE-algebra, BSE-function
Categories:46J10, 46J25, 43A30, 43A45

34. CJM 2015 (vol 67 pp. 870)

Lin, Huaxin
Minimal Dynamical Systems on Connected Odd Dimensional Spaces
Let $\beta\colon S^{2n+1}\to S^{2n+1}$ be a minimal homeomorphism ($n\ge 1$). We show that the crossed product $C(S^{2n+1})\rtimes_\beta \mathbb{Z}$ has rational tracial rank at most one. Let $\Omega$ be a connected compact metric space with finite covering dimension and with $H^1(\Omega, \mathbb{Z})=\{0\}.$ Suppose that $K_i(C(\Omega))=\mathbb{Z}\oplus G_i,$ where $G_i$ is a finite abelian group, $i=0,1.$ Let $\beta\colon \Omega\to\Omega$ be a minimal homeomorphism. We also show that $A=C(\Omega)\rtimes_\beta\mathbb{Z}$ has rational tracial rank at most one and is classifiable. In particular, this applies to the minimal dynamical systems on odd dimensional real projective spaces. This is done by studying minimal homeomorphisms on $X\times \Omega,$ where $X$ is the Cantor set.

Keywords:minimal dynamical systems
Categories:46L35, 46L05

35. CJM 2014 (vol 67 pp. 404)

Hua, Jiajie; Lin, Huaxin
Rotation Algebras and the Exel Trace Formula
We found that if $u$ and $v$ are any two unitaries in a unital $C^*$-algebra with $\|uv-vu\|\lt 2$ and $uvu^*v^*$ commutes with $u$ and $v,$ then the $C^*$-subalgebra $A_{u,v}$ generated by $u$ and $v$ is isomorphic to a quotient of some rotation algebra $A_\theta$ provided that $A_{u,v}$ has a unique tracial state. We also found that the Exel trace formula holds in any unital $C^*$-algebra. Let $\theta\in (-1/2, 1/2)$ be a real number. We prove the following: For any $\epsilon\gt 0,$ there exists $\delta\gt 0$ satisfying the following: if $u$ and $v$ are two unitaries in any unital simple $C^*$-algebra $A$ with tracial rank zero such that \[ \|uv-e^{2\pi i\theta}vu\|\lt \delta \text{ and } {1\over{2\pi i}}\tau(\log(uvu^*v^*))=\theta, \] for all tracial state $\tau$ of $A,$ then there exists a pair of unitaries $\tilde{u}$ and $\tilde{v}$ in $A$ such that \[ \tilde{u}\tilde{v}=e^{2\pi i\theta} \tilde{v}\tilde{u},\,\, \|u-\tilde{u}\|\lt \epsilon \text{ and } \|v-\tilde{v}\|\lt \epsilon. \]

Keywords:rotation algebras, Exel trace formula

36. CJM 2013 (vol 65 pp. 1287)

Reihani, Kamran
$K$-theory of Furstenberg Transformation Group $C^*$-algebras
The paper studies the $K$-theoretic invariants of the crossed product $C^{*}$-algebras associated with an important family of homeomorphisms of the tori $\mathbb{T}^{n}$ called Furstenberg transformations. Using the Pimsner-Voiculescu theorem, we prove that given $n$, the $K$-groups of those crossed products, whose corresponding $n\times n$ integer matrices are unipotent of maximal degree, always have the same rank $a_{n}$. We show using the theory developed here that a claim made in the literature about the torsion subgroups of these $K$-groups is false. Using the representation theory of the simple Lie algebra $\frak{sl}(2,\mathbb{C})$, we show that, remarkably, $a_{n}$ has a combinatorial significance. For example, every $a_{2n+1}$ is just the number of ways that $0$ can be represented as a sum of integers between $-n$ and $n$ (with no repetitions). By adapting an argument of van Lint (in which he answered a question of Erdős), a simple, explicit formula for the asymptotic behavior of the sequence $\{a_{n}\}$ is given. Finally, we describe the order structure of the $K_{0}$-groups of an important class of Furstenberg crossed products, obtaining their complete Elliott invariant using classification results of H. Lin and N. C. Phillips.

Keywords:$K$-theory, transformation group $C^*$-algebra, Furstenberg transformation, Anzai transformation, minimal homeomorphism, positive cone, minimal homeomorphism
Categories:19K14, 19K99, 46L35, 46L80, , 05A15, 05A16, 05A17, 15A36, 17B10, 17B20, 37B05, 54H20

37. CJM 2013 (vol 66 pp. 1143)

Plevnik, Lucijan; Šemrl, Peter
Maps Preserving Complementarity of Closed Subspaces of a Hilbert Space
Let $\mathcal{H}$ and $\mathcal{K}$ be infinite-dimensional separable Hilbert spaces and ${\rm Lat}\,\mathcal{H}$ the lattice of all closed subspaces oh $\mathcal{H}$. We describe the general form of pairs of bijective maps $\phi , \psi : {\rm Lat}\,\mathcal{H} \to {\rm Lat}\,\mathcal{K}$ having the property that for every pair $U,V \in {\rm Lat}\,\mathcal{H}$ we have $\mathcal{H} = U \oplus V \iff \mathcal{K} = \phi (U) \oplus \psi (V)$. Then we reformulate this theorem as a description of bijective image equality and kernel equality preserving maps acting on bounded linear idempotent operators. Several known structural results for maps on idempotents are easy consequences.

Keywords:Hilbert space, lattice of closed subspaces, complemented subspaces, adjacent subspaces, idempotents
Categories:46B20, 47B49

38. CJM 2013 (vol 65 pp. 1005)

Forrest, Brian; Miao, Tianxuan
Uniformly Continuous Functionals and M-Weakly Amenable Groups
Let $G$ be a locally compact group. Let $A_{M}(G)$ ($A_{0}(G)$)denote the closure of $A(G)$, the Fourier algebra of $G$ in the space of bounded (completely bounded) multipliers of $A(G)$. We call a locally compact group M-weakly amenable if $A_M(G)$ has a bounded approximate identity. We will show that when $G$ is M-weakly amenable, the algebras $A_{M}(G)$ and $A_{0}(G)$ have properties that are characteristic of the Fourier algebra of an amenable group. Along the way we show that the sets of tolopolically invariant means associated with these algebras have the same cardinality as those of the Fourier algebra.

Keywords:Fourier algebra, multipliers, weakly amenable, uniformly continuous functionals
Categories:43A07, 43A22, 46J10, 47L25

39. CJM 2013 (vol 66 pp. 596)

Eilers, Søren; Restorff, Gunnar; Ruiz, Efren
The Ordered $K$-theory of a Full Extension
Let $\mathfrak{A}$ be a $C^{*}$-algebra with real rank zero which has the stable weak cancellation property. Let $\mathfrak{I}$ be an ideal of $\mathfrak{A}$ such that $\mathfrak{I}$ is stable and satisfies the corona factorization property. We prove that $ 0 \to \mathfrak{I} \to \mathfrak{A} \to \mathfrak{A} / \mathfrak{I} \to 0 $ is a full extension if and only if the extension is stenotic and $K$-lexicographic. {As an immediate application, we extend the classification result for graph $C^*$-algebras obtained by Tomforde and the first named author to the general non-unital case. In combination with recent results by Katsura, Tomforde, West and the first author, our result may also be used to give a purely $K$-theoretical description of when an essential extension of two simple and stable graph $C^*$-algebras is again a graph $C^*$-algebra.}

Keywords:classification, extensions, graph algebras
Categories:46L80, 46L35, 46L05

40. CJM 2013 (vol 66 pp. 373)

Kim, Sun Kwang; Lee, Han Ju
Uniform Convexity and Bishop-Phelps-Bollobás Property
A new characterization of the uniform convexity of Banach space is obtained in the sense of Bishop-Phelps-Bollobás theorem. It is also proved that the couple of Banach spaces $(X,Y)$ has the bishop-phelps-bollobás property for every banach space $y$ when $X$ is uniformly convex. As a corollary, we show that the Bishop-Phelps-Bollobás theorem holds for bilinear forms on $\ell_p\times \ell_q$ ($1\lt p, q\lt \infty$).

Keywords:Bishop-Phelps-Bollobás property, Bishop-Phelps-Bollobás theorem, norm attaining, uniformly convex
Categories:46B20, 46B22

41. CJM 2013 (vol 66 pp. 721)

Durand-Cartagena, E.; Ihnatsyeva, L.; Korte, R.; Szumańska, M.
On Whitney-type Characterization of Approximate Differentiability on Metric Measure Spaces
We study approximately differentiable functions on metric measure spaces admitting a Cheeger differentiable structure. The main result is a Whitney-type characterization of approximately differentiable functions in this setting. As an application, we prove a Stepanov-type theorem and consider approximate differentiability of Sobolev, $BV$ and maximal functions.

Keywords:approximate differentiability, metric space, strong measurable differentiable structure, Whitney theorem
Categories:26B05, 28A15, 28A75, 46E35

42. CJM 2013 (vol 65 pp. 1073)

Kalantar, Mehrdad; Neufang, Matthias
From Quantum Groups to Groups
In this paper we use the recent developments in the representation theory of locally compact quantum groups, to assign, to each locally compact quantum group $\mathbb{G}$, a locally compact group $\tilde {\mathbb{G}}$ which is the quantum version of point-masses, and is an invariant for the latter. We show that ``quantum point-masses" can be identified with several other locally compact groups that can be naturally assigned to the quantum group $\mathbb{G}$. This assignment preserves compactness as well as discreteness (hence also finiteness), and for large classes of quantum groups, amenability. We calculate this invariant for some of the most well-known examples of non-classical quantum groups. Also, we show that several structural properties of $\mathbb{G}$ are encoded by $\tilde {\mathbb{G}}$: the latter, despite being a simpler object, can carry very important information about $\mathbb{G}$.

Keywords:locally compact quantum group, locally compact group, von Neumann algebra

43. CJM 2013 (vol 66 pp. 641)

Grigor'yan, Alexander; Hu, Jiaxin
Heat Kernels and Green Functions on Metric Measure Spaces
We prove that, in a setting of local Dirichlet forms on metric measure spaces, a two-sided sub-Gaussian estimate of the heat kernel is equivalent to the conjunction of the volume doubling propety, the elliptic Harnack inequality and a certain estimate of the capacity between concentric balls. The main technical tool is the equivalence between the capacity estimate and the estimate of a mean exit time in a ball, that uses two-sided estimates of a Green function in a ball.

Keywords:Dirichlet form, heat kernel, Green function, capacity
Categories:35K08, 28A80, 31B05, 35J08, 46E35, 47D07

44. CJM 2013 (vol 65 pp. 783)

Garcés, Jorge J.; Peralta, Antonio M.
Generalised Triple Homomorphisms and Derivations
We introduce generalised triple homomorphism between Jordan Banach triple systems as a concept which extends the notion of generalised homomorphism between Banach algebras given by K. Jarosz and B.E. Johnson in 1985 and 1987, respectively. We prove that every generalised triple homomorphism between JB$^*$-triples is automatically continuous. When particularised to C$^*$-algebras, we rediscover one of the main theorems established by B.E. Johnson. We shall also consider generalised triple derivations from a Jordan Banach triple $E$ into a Jordan Banach triple $E$-module, proving that every generalised triple derivation from a JB$^*$-triple $E$ into itself or into $E^*$ is automatically continuous.

Keywords:generalised homomorphism, generalised triple homomorphism, generalised triple derivation, Banach algebra, Jordan Banach triple, C$^*$-algebra, JB$^*$-triple
Categories:46L05, 46L70, 47B48, 17C65, 46K70, 46L40, 47B47, 47B49

45. CJM 2012 (vol 65 pp. 1236)

De Bernardi, Carlo Alberto
Higher Connectedness Properties of Support Points and Functionals of Convex Sets
We prove that the set of all support points of a nonempty closed convex bounded set $C$ in a real infinite-dimensional Banach space $X$ is $\mathrm{AR(}\sigma$-$\mathrm{compact)}$ and contractible. Under suitable conditions, similar results are proved also for the set of all support functionals of $C$ and for the domain, the graph and the range of the subdifferential map of a proper convex l.s.c. function on $X$.

Keywords:convex set, support point, support functional, absolute retract, Leray-Schauder continuation principle
Categories:46A55, 46B99, 52A07

46. CJM 2012 (vol 65 pp. 863)

Josuat-Vergès, Matthieu
Cumulants of the $q$-semicircular Law, Tutte Polynomials, and Heaps
The $q$-semicircular distribution is a probability law that interpolates between the Gaussian law and the semicircular law. There is a combinatorial interpretation of its moments in terms of matchings where $q$ follows the number of crossings, whereas for the free cumulants one has to restrict the enumeration to connected matchings. The purpose of this article is to describe combinatorial properties of the classical cumulants. We show that like the free cumulants, they are obtained by an enumeration of connected matchings, the weight being now an evaluation of the Tutte polynomial of a so-called crossing graph. The case $q=0$ of these cumulants was studied by Lassalle using symmetric functions and hypergeometric series. We show that the underlying combinatorics is explained through the theory of heaps, which is Viennot's geometric interpretation of the Cartier-Foata monoid. This method also gives a general formula for the cumulants in terms of free cumulants.

Keywords:moments, cumulants, matchings, Tutte polynomials, heaps
Categories:05A18, 05C31, 46L54

47. CJM 2012 (vol 65 pp. 989)

Chu, C-H.; Velasco, M. V.
Automatic Continuity of Homomorphisms in Non-associative Banach Algebras
We introduce the concept of a rare element in a non-associative normed algebra and show that the existence of such element is the only obstruction to continuity of a surjective homomorphism from a non-associative Banach algebra to a unital normed algebra with simple completion. Unital associative algebras do not admit any rare element and hence automatic continuity holds.

Keywords:automatic continuity, non-associative algebra, spectrum, rare operator, rare element
Categories:46H40, 46H70

48. CJM 2012 (vol 66 pp. 102)

Birth, Lidia; Glöckner, Helge
Continuity of convolution of test functions on Lie groups
For a Lie group $G$, we show that the map $C^\infty_c(G)\times C^\infty_c(G)\to C^\infty_c(G)$, $(\gamma,\eta)\mapsto \gamma*\eta$ taking a pair of test functions to their convolution is continuous if and only if $G$ is $\sigma$-compact. More generally, consider $r,s,t \in \mathbb{N}_0\cup\{\infty\}$ with $t\leq r+s$, locally convex spaces $E_1$, $E_2$ and a continuous bilinear map $b\colon E_1\times E_2\to F$ to a complete locally convex space $F$. Let $\beta\colon C^r_c(G,E_1)\times C^s_c(G,E_2)\to C^t_c(G,F)$, $(\gamma,\eta)\mapsto \gamma *_b\eta$ be the associated convolution map. The main result is a characterization of those $(G,r,s,t,b)$ for which $\beta$ is continuous. Convolution of compactly supported continuous functions on a locally compact group is also discussed, as well as convolution of compactly supported $L^1$-functions and convolution of compactly supported Radon measures.

Keywords:Lie group, locally compact group, smooth function, compact support, test function, second countability, countable basis, sigma-compactness, convolution, continuity, seminorm, product estimates
Categories:22E30, 46F05, 22D15, 42A85, 43A10, 43A15, 46A03, 46A13, 46E25

49. CJM 2012 (vol 65 pp. 1043)

Hu, Zhiguo; Neufang, Matthias; Ruan, Zhong-Jin
Convolution of Trace Class Operators over Locally Compact Quantum Groups
We study locally compact quantum groups $\mathbb{G}$ through the convolution algebras $L_1(\mathbb{G})$ and $(T(L_2(\mathbb{G})), \triangleright)$. We prove that the reduced quantum group $C^*$-algebra $C_0(\mathbb{G})$ can be recovered from the convolution $\triangleright$ by showing that the right $T(L_2(\mathbb{G}))$-module $\langle K(L_2(\mathbb{G}) \triangleright T(L_2(\mathbb{G}))\rangle$ is equal to $C_0(\mathbb{G})$. On the other hand, we show that the left $T(L_2(\mathbb{G}))$-module $\langle T(L_2(\mathbb{G}))\triangleright K(L_2(\mathbb{G})\rangle$ is isomorphic to the reduced crossed product $C_0(\widehat{\mathbb{G}}) \,_r\!\ltimes C_0(\mathbb{G})$, and hence is a much larger $C^*$-subalgebra of $B(L_2(\mathbb{G}))$. We establish a natural isomorphism between the completely bounded right multiplier algebras of $L_1(\mathbb{G})$ and $(T(L_2(\mathbb{G})), \triangleright)$, and settle two invariance problems associated with the representation theorem of Junge-Neufang-Ruan (2009). We characterize regularity and discreteness of the quantum group $\mathbb{G}$ in terms of continuity properties of the convolution $\triangleright$ on $T(L_2(\mathbb{G}))$. We prove that if $\mathbb{G}$ is semi-regular, then the space $\langle T(L_2(\mathbb{G}))\triangleright B(L_2(\mathbb{G}))\rangle$ of right $\mathbb{G}$-continuous operators on $L_2(\mathbb{G})$, which was introduced by Bekka (1990) for $L_{\infty}(G)$, is a unital $C^*$-subalgebra of $B(L_2(\mathbb{G}))$. In the representation framework formulated by Neufang-Ruan-Spronk (2008) and Junge-Neufang-Ruan, we show that the dual properties of compactness and discreteness can be characterized simultaneously via automatic normality of quantum group bimodule maps on $B(L_2(\mathbb{G}))$. We also characterize some commutation relations of completely bounded multipliers of $(T(L_2(\mathbb{G})), \triangleright)$ over $B(L_2(\mathbb{G}))$.

Keywords:locally compact quantum groups and associated Banach algebras
Categories:22D15, 43A30, 46H05

50. CJM 2012 (vol 65 pp. 481)

Ara, Pere; Dykema, Kenneth J.; Rørdam, Mikael
Correction of Proofs in "Purely Infinite Simple $C^*$-algebras Arising from Free Product Constructions'' and a Subsequent Paper
The proofs of Theorem 2.2 of K. J. Dykema and M. Rørdam, Purely infinite simple $C^*$-algebras arising from free product constructions}, Canad. J. Math. 50 (1998), 323--341 and of Theorem 3.1 of K. J. Dykema, Purely infinite simple $C^*$-algebras arising from free product constructions, II, Math. Scand. 90 (2002), 73--86 are corrected.

Keywords:C*-algebras, purely infinite
   1 2 3 4 ... 7    

© Canadian Mathematical Society, 2017 :