1. CJM Online first
 da Silva, Genival; Kerr, Matt; Pearlstein, Gregory

Arithmetic of degenerating principal variations of Hodge structure: examples arising from mirror symmetry and middle convolution
We collect evidence in support of a conjecture of Griffiths,
Green
and Kerr
on the arithmetic of extension classes of
limiting
mixed Hodge structures arising from semistable degenerations
over
a number field. After briefly summarizing how a result of Iritani
implies this conjecture for a collection of hypergeometric
CalabiYau threefold examples studied by Doran and Morgan,
the authors investigate a sequence of (nonhypergeometric) examples
in dimensions $1\leq d\leq6$ arising from Katz's theory of the
middle
convolution.
A crucial role is played by the MumfordTate
group (which is $G_{2}$) of the family of 6folds, and the theory
of boundary components of MumfordTate domains.
Keywords:variation of Hodge structure, limiting mixed Hodge structure, CalabiYau variety, middle convolution, MumfordTate group Categories:14D07, 14M17, 17B45, 20G99, 32M10, 32G20 

2. CJM Online first
 Roth, Oliver

Pontryagin's maximum principle for the Loewner equation in higher dimensions
In this paper we develop a variational method for the Loewner
equation in higher dimensions. As a result we obtain a version of Pontryagin's
maximum principle from optimal control theory for the Loewner equation in
several complex variables. Based on recent work of Arosio, Bracci and
Wold,
we then apply our version of the Pontryagin maximum
principle to obtain firstorder necessary conditions for the extremal
mappings for a wide class
of extremal problems over the set of normalized biholomorphic
mappings on the unit ball in $\mathbb{C}^n$.
Keywords:univalent function, Loewner's equation Categories:32H02, 30C55, 49K15 

3. CJM 2014 (vol 66 pp. 961)
 Baird, Thomas

Moduli Spaces of Vector Bundles over a Real Curve: $\mathbb Z/2$Betti Numbers
Moduli spaces of real bundles over a real curve arise naturally
as Lagrangian submanifolds of the moduli space of semistable
bundles over a complex curve. In this paper, we adapt the methods
of AtiyahBott's ``YangMills over a Riemann Surface'' to compute
$\mathbb Z/2$Betti numbers of these spaces.
Keywords:cohomology of moduli spaces, holomorphic vector bundles Categories:32L05, 14P25 

4. CJM 2013 (vol 66 pp. 1413)
 Zhang, Xi; Zhang, Xiangwen

Generalized KÃ¤hlerEinstein Metrics and Energy Functionals
In this paper, we consider a generalized
KÃ¤hlerEinstein equation on KÃ¤hler manifold $M$. Using the
twisted $\mathcal K$energy introduced by Song and Tian, we show
that the existence of generalized KÃ¤hlerEinstein metrics with
semipositive twisting $(1, 1)$form $\theta $ is also closely
related to the properness of the twisted $\mathcal K$energy
functional. Under the condition that the twisting form $\theta $ is
strictly positive at a point or $M$ admits no nontrivial Hamiltonian
holomorphic vector field, we prove that the existence of generalized
KÃ¤hlerEinstein metric implies a MoserTrudinger type inequality.
Keywords:complex MongeAmpÃ¨re equation, energy functional, generalized KÃ¤hlerEinstein metric, MoserTrudinger type inequality Categories:53C55, 32W20 

5. CJM 2012 (vol 65 pp. 808)
 Grandjean, Vincent

On Hessian Limit Directions along Gradient Trajectories
Given a nonoscillating gradient trajectory $\gamma$ of a real analytic function $f$,
we show that the limit $\nu$ of the secants at the limit point
$\mathbf{0}$
of $\gamma$ along the trajectory
$\gamma$ is an eigenvector of the limit of the direction of the
Hessian matrix $\operatorname{Hess} (f)$ at $\mathbf{0}$
along $\gamma$. The same holds true at infinity if the function is globally subanalytic. We also deduce
some interesting estimates along the trajectory. Away from the ends of the ambient space, this property is
of metric nature and still holds in a general Riemannian analytic setting.
Keywords:gradient trajectories, nonoscillation, limit of Hessian directions, limit of secants, trajectories at infinity Categories:34A26, 34C08, 32Bxx, 32Sxx 

6. CJM 2012 (vol 66 pp. 197)
 Harris, Adam; Kolář, Martin

On Hyperbolicity of Domains with Strictly Pseudoconvex Ends
This article establishes a sufficient condition for Kobayashi
hyperbolicity of unbounded domains in terms of curvature.
Specifically, when $\Omega\subset{\mathbb C}^{n}$ corresponds to a
sublevel set of a smooth, realvalued function $\Psi$, such that the
form $\omega = {\bf i}\partial\bar{\partial}\Psi$ is KÃ¤hler and
has bounded curvature outside a bounded subset, then this domain
admits a hermitian metric of strictly negative holomorphic sectional
curvature.
Keywords:Kobayashihyperbolicity, KÃ¤hler metric, plurisubharmonic function Categories:32Q45, 32Q35 

7. CJM 2012 (vol 65 pp. 721)
 Adamus, Janusz; Randriambololona, Serge; Shafikov, Rasul

Tameness of Complex Dimension in a Real Analytic Set
Given a real analytic set $X$ in a complex manifold and a positive
integer $d$, denote by $\mathcal A^d$ the set of points $p$ in $X$ at which
there exists a germ of a complex analytic set of dimension $d$ contained in $X$.
It is proved that $\mathcal A^d$ is a closed semianalytic subset of $X$.
Keywords:complex dimension, finite type, semianalytic set, tameness Categories:32B10, 32B20, 32C07, 32C25, 32V15, 32V40, 14P15 

8. CJM 2012 (vol 64 pp. 721)
 Achab, Dehbia; Faraut, Jacques

Analysis of the BrylinskiKostant Model for Spherical Minimal Representations
We revisit with another view point the construction by R. Brylinski
and B. Kostant of minimal representations of simple Lie groups. We
start from a pair $(V,Q)$, where $V$ is a complex vector space and $Q$
a homogeneous polynomial of degree 4 on $V$.
The manifold $\Xi $ is an orbit of a covering of ${\rm Conf}(V,Q)$,
the conformal group of the pair $(V,Q)$, in a finite dimensional
representation space.
By a generalized KantorKoecherTits construction we obtain a complex
simple Lie algebra $\mathfrak g$, and furthermore a real
form ${\mathfrak g}_{\mathbb R}$. The connected and simply connected Lie
group $G_{\mathbb R}$ with ${\rm Lie}(G_{\mathbb R})={\mathfrak
g}_{\mathbb R}$ acts unitarily on a Hilbert space of holomorphic
functions defined on the manifold $\Xi $.
Keywords:minimal representation, KantorKoecherTits construction, Jordan algebra, Bernstein identity, Meijer $G$function Categories:17C36, 22E46, 32M15, 33C80 

9. CJM 2011 (vol 64 pp. 1329)
10. CJM 2011 (vol 64 pp. 429)
11. CJM 2011 (vol 63 pp. 755)
 Chu, Kenneth C. K.

On the Geometry of the Moduli Space of Real Binary Octics
The moduli space of smooth real binary octics has five connected
components. They parametrize the real binary octics whose defining
equations have $0,\dots,4$ complexconjugate pairs of roots
respectively. We show that each of these five components has a real
hyperbolic structure in the sense that each is isomorphic as a
realanalytic manifold to the quotient of an open dense subset of
$5$dimensional real hyperbolic space $\mathbb{RH}^5$ by the action of an
arithmetic subgroup of $\operatorname{Isom}(\mathbb{RH}^5)$. These subgroups are
commensurable to discrete hyperbolic reflection groups, and the
Vinberg diagrams of the latter are computed.
Keywords:real binary octics, moduli space, complex hyperbolic geometry, Vinberg algorithm Categories:32G13, 32G20, 14D05, 14D20 

12. CJM 2011 (vol 63 pp. 1038)
 Cohen, D.; Denham, G.; Falk, M.; Varchenko, A.

Critical Points and Resonance of Hyperplane Arrangements
If $\Phi_\lambda$ is a master function corresponding to a hyperplane arrangement
$\mathcal A$ and a collection of weights $\lambda$, we investigate the relationship
between the critical set of $\Phi_\lambda$, the variety defined by the vanishing
of the oneform $\omega_\lambda=\operatorname{d} \log \Phi_\lambda$, and the resonance of $\lambda$.
For arrangements satisfying certain conditions, we show that if $\lambda$ is
resonant in dimension $p$, then the critical set
of $\Phi_\lambda$ has codimension
at most $p$. These include all free arrangements and all rank $3$ arrangements.
Keywords:hyperplane arrangement, master function, resonant weights, critical set Categories:32S22, 55N25, 52C35 

13. CJM 2010 (vol 62 pp. 1276)
 El Wassouli, Fouzia

A Generalized Poisson Transform of an $L^{p}$Function over the Shilov Boundary of the $n$Dimensional Lie Ball
Let $\mathcal{D}$ be the $n$dimensional Lie ball and let
$\mathbf{B}(S)$ be the space of hyperfunctions on the Shilov
boundary $S$ of $\mathcal{D}$.
The aim of this paper is to give a
necessary and sufficient condition on the generalized Poisson
transform $P_{l,\lambda}f$ of an element $f$ in the space
$\mathbf{B}(S)$ for $f$ to be in $ L^{p}(S)$, $1 > p > \infty.$
Namely, if $F$ is the Poisson transform of some $f\in
\mathbf{B}(S)$ (i.e., $F=P_{l,\lambda}f$), then for any
$l\in \mathbb{Z}$ and $\lambda\in \mathbb{C}$ such that
$\mathcal{R}e[i\lambda] > \frac{n}{2}1$, we show that $f\in L^{p}(S)$ if and
only if $f$ satisfies the growth condition
$$
\F\_{\lambda,p}=\sup_{0\leq r
< 1}(1r^{2})^{\mathcal{R}e[i\lambda]\frac{n}{2}+l}\Big[\int_{S}F(ru)^{p}du
\Big]^{\frac{1}{p}} < +\infty.
$$
Keywords:Lie ball, Shilov boundary, Fatou's theorem, hyperfuctions, parabolic subgroup, homogeneous line bundle Categories:32A45, 30E20, 33C67, 33C60, 33C55, 32A25, 33C75, 11K70 

14. CJM 2010 (vol 62 pp. 889)
 Xia, Jingbo

Singular Integral Operators and Essential Commutativity on the Sphere
Let ${\mathcal T}$ be the $C^\ast $algebra generated by the Toeplitz operators $\{T_\varphi : \varphi \in L^\infty (S,d\sigma )\}$ on the Hardy space $H^2(S)$ of the unit sphere in $\mathbf{C}^n$. It is well known that ${\mathcal T}$ is contained in the essential commutant of $\{T_\varphi : \varphi \in \operatorname{VMO}\cap L^\infty (S,d\sigma )\}$. We show that the essential commutant of $\{T_\varphi : \varphi \in \operatorname{VMO}\cap L^\infty (S,d\sigma )\}$ is strictly larger than ${\mathcal T}$.
Categories:32A55, 46L05, 47L80 

15. CJM 2009 (vol 62 pp. 439)
 Sundhäll, Marcus; Tchoundja, Edgar

On Hankel Forms of Higher Weights: The Case of Hardy Spaces
In this paper we study bilinear Hankel forms of higher weights on Hardy spaces in several dimensions. (The Schatten class Hankel forms of higher weights on weighted Bergman spaces have already been studied by Janson and Peetre for one dimension and by SundhÃ¤ll for several dimensions). We get a full characterization of Schatten class Hankel forms in terms of conditions for the symbols to be in certain Besov spaces. Also, the Hankel forms are bounded and compact if and only if the symbols satisfy certain Carleson measure criteria and vanishing Carleson measure criteria, respectively.
Keywords:Hankel forms, Schattenâvon Neumann classes, Bergman spaces, Hardy spaces, Besov spaces, transvectant, unitary representations, MÃ¶bius group Categories:32A25, 32A35, 32A37, 47B35 

16. CJM 2009 (vol 62 pp. 218)
 Xing, Yang

The General Definition of the Complex MongeAmpÃ¨re Operator on Compact KÃ¤hler Manifolds
We introduce a wide subclass ${\mathcal F}(X,\omega)$ of
quasiplurisubharmonic functions in a compact KÃ¤hler manifold, on
which the complex MongeAmpÃ¨re operator is well defined and the
convergence theorem is valid. We also prove that ${\mathcal F}(X,\omega)$
is a convex cone and includes all quasiplurisubharmonic functions
that are in the Cegrell class.
Keywords:complex MongeAmpÃ¨re operator, compact KÃ¤hler manifold Categories:32W20, 32Q15 

17. CJM 2009 (vol 62 pp. 3)
 Anchouche, Boudjemâa

On the Asymptotic Behavior of Complete KÃ¤hler Metrics of Positive Ricci Curvature
Let $( X,g) $ be a complete noncompact KÃ¤hler manifold, of
dimension $n\geq2,$ with positive Ricci curvature and of standard type
(see the definition below). N. Mok proved that $X$ can be
compactified, \emph{i.e.,} $X$ is biholomorphic to a quasiprojective
variety$.$ The aim of this paper is to prove that the $L^{2}$
holomorphic sections of the line bundle $K_{X}^{q}$ and the volume
form of the metric $g$ have no essential singularities near the
divisor at infinity. As a consequence we obtain a comparison between
the volume forms of the KÃ¤hler metric $g$ and of the FubiniStudy
metric induced on $X$. In the case of $\dim_{\mathbb{C} }X=2,$ we
establish a relation between the number of components of the divisor
$D$ and the dimension of the groups $H^{i}( \overline{X},
\Omega_{\overline{X}}^{1}( \log D) )$.
Categories:53C55, 32A10 

18. CJM 2009 (vol 61 pp. 1407)
 Will, Pierre

Traces, CrossRatios and 2Generator Subgroups of $\SU(2,1)$
In this work, we investigate how to decompose a pair $(A,B)$ of
loxodromic isometries of the complex hyperbolic plane $\mathbf H^{2}_{\mathbb C}$ under
the form $A=I_1I_2$ and $B=I_3I_2$, where the $I_k$'s are
involutions. The main result is a decomposability criterion, which
is expressed in terms of traces of elements of the group $\langle
A,B\rangle$.
Categories:14L24, 22E40, 32M15, 51M10 

19. CJM 2009 (vol 61 pp. 566)
 Graham, Ian; Hamada, Hidetaka; Kohr, Gabriela; Pfaltzgraff, John A.

Convex Subordination Chains in Several Complex Variables
In this paper we study the notion of a convex subordination chain in several
complex variables. We obtain certain necessary and sufficient conditions for a
mapping to be a convex subordination chain, and we give various examples of
convex subordination chains on the Euclidean unit ball in $\mathbb{C}^n$. We
also obtain a sufficient condition for injectivity of $f(z/\z\,\z\)$
on $B^n\setminus\{0\}$, where $f(z,t)$ is a convex subordination chain
over $(0,1)$.
Keywords:biholomorphic mapping, convex mapping, convex subordination chain, Loewner chain, subordination Categories:32H02, 30C45 

20. CJM 2009 (vol 61 pp. 50)
21. CJM 2008 (vol 60 pp. 1219)
 Baracco, Luca; Zampieri, Giuseppe

CR Extension from Manifolds of Higher Type
This paper deals with the extension of CR functions
from a manifold $M\subset \mathbb C^n$ into directions produced by higher
order commutators of holomorphic and antiholomorphic vector fields. It
uses the theory of complex ``sectors'' attached to real submanifolds
introduced in recent joint work of the authors with D. Zaitsev. In
addition, it develops a new technique of approximation of sectors by
smooth discs.
Categories:32V25, 32V35, 32C16, 32F18 

22. CJM 2008 (vol 60 pp. 721)
 Adamus, J.; Bierstone, E.; Milman, P. D.

Uniform Linear Bound in Chevalley's Lemma
We obtain a uniform linear bound for the Chevalley function at a point in
the source of an analytic mapping that is regular in the sense of
Gabrielov. There is a version of
Chevalley's lemma also along a fibre, or at a point of the image of a proper
analytic mapping. We get a uniform linear bound for the Chevalley
function of a closed Nash (or formally Nash) subanalytic set.
Keywords:Chevalley function, regular mapping, Nash subanalytic set Categories:13J07, 32B20, 13J10, 32S10 

23. CJM 2008 (vol 60 pp. 33)
 Braun, Rüdiger W.; Meise, Reinhold; Taylor, B. A.

Higher Order Tangents to Analytic Varieties along Curves. II
Let~$V$ be an analytic variety in some open set in~$\C^n$. For a
real analytic curve~$\gamma$ with $ \gamma(0) = 0 $ and $ d \ge 1 $
define $ V_t = t^{d}(V  \gamma(t)) $. It was shown in a previous
paper that the currents of integration over~$V_t$ converge to a
limit current whose support $ T_{\gamma,d} V $ is an algebraic
variety as~$t$ tends to zero. Here, it is shown that the canonical
defining function of the limit current is the suitably normalized
limit of the canonical defining functions of the~$V_t$. As a
corollary, it is shown that $ T_{\gamma,d} V $ is either
inhomogeneous or coincides with $ T_{\gamma,\delta} V $ for
all~$\delta$ in some neighborhood of~$d$. As another application it
is shown that for surfaces only a finite number of curves lead to
limit varieties that are interesting for the investigation of
Phragm\'enLindel\"of conditions. Corresponding results for limit
varieties $ T_{\sigma,\delta} W $ of algebraic varieties W along
real analytic curves tending to infinity are derived by a
reduction to the local case.
Category:32C25 

24. CJM 2007 (vol 59 pp. 1121)
25. CJM 2007 (vol 59 pp. 1098)
 Rodrigues, B.

Ruled Exceptional Surfaces and the Poles of Motivic Zeta Functions
In this paper we study ruled surfaces which appear as an exceptional
surface in a succession of blowingups. In particular we prove
that the $e$invariant of such a ruled exceptional surface $E$ is
strictly positive whenever its intersection with the other
exceptional surfaces does not contain a fiber (of $E$). This fact
immediately enables us to resolve an open problem concerning an
intersection configuration on such a ruled exceptional surface
consisting of three nonintersecting sections. In the second part
of the paper we apply the nonvanishing of $e$ to the study of the
poles of the wellknown topological, Hodge and motivic zeta
functions.
Categories:14E15, 14J26, 14B05, 14J17, 32S45 
