Canadian Mathematical Society
Canadian Mathematical Society
  location:  Publicationsjournals
Search results

Search: All MSC categories starting with 30D50

  Expand all        Collapse all Results 1 - 4 of 4

1. CJM 2010 (vol 62 pp. 1182)

Yue, Hong
A Fractal Function Related to the John-Nirenberg Inequality for $Q_{\alpha}({\mathbb R^n})$
A borderline case function $f$ for $ Q_{\alpha}({\mathbb R^n})$ spaces is defined as a Haar wavelet decomposition, with the coefficients depending on a fixed parameter $\beta>0$. On its support $I_0=[0, 1]^n$, $f(x)$ can be expressed by the binary expansions of the coordinates of $x$. In particular, $f=f_{\beta}\in Q_{\alpha}({\mathbb R^n})$ if and only if $\alpha<\beta<\frac{n}{2}$, while for $\beta=\alpha$, it was shown by Yue and Dafni that $f$ satisfies a John--Nirenberg inequality for $ Q_{\alpha}({\mathbb R^n})$. When $\beta\neq 1$, $f$ is a self-affine function. It is continuous almost everywhere and discontinuous at all dyadic points inside $I_0$. In addition, it is not monotone along any coordinate direction in any small cube. When the parameter $\beta\in (0, 1)$, $f$ is onto from $I_0$ to $[-\frac{1}{1-2^{-\beta}}, \frac{1}{1-2^{-\beta}}]$, and the graph of $f$ has a non-integer fractal dimension $n+1-\beta$.

Keywords:Haar wavelets, Q spaces, John-Nirenberg inequality, Greedy expansion, self-affine, fractal, Box dimension
Categories:42B35, 42C10, 30D50, 28A80

2. CJM 1999 (vol 51 pp. 977)

Fisher, Stephen D.; Khavinson, Dmitry
Extreme Pick-Nevanlinna Interpolants
Following the investigations of B.~Abrahamse [1], F.~Forelli [11], M.~Heins [14] and others, we continue the study of the Pick-Nevanlinna interpolation problem in multiply-connected planar domains. One major focus is on the problem of characterizing the extreme points of the convex set of interpolants of a fixed data set. Several other related problems are discussed.

Categories:30D50, 30D99

3. CJM 1998 (vol 50 pp. 449)

Aulaskari, Rauno; He, Yuzan; Ristioja, Juha; Zhao, Ruhan
$Q_p$ spaces on Riemann surfaces
We study the function spaces $Q_p(R)$ defined on a Riemann surface $R$, which were earlier introduced in the unit disk of the complex plane. The nesting property $Q_p(R)\subseteq Q_q(R)$ for $0
Categories:30D45, 30D50, 30F35

4. CJM 1998 (vol 50 pp. 595)

Luo, Donghan; MacGregor, Thomas
Multipliers of fractional Cauchy transforms and smoothness conditions
This paper studies conditions on an analytic function that imply it belongs to ${\cal M}_\alpha$, the set of multipliers of the family of functions given by $f(z) = \int_{|\zeta|=1} {1 \over (1-\overline\zeta z)^\alpha} \,d\mu (\zeta)$ $(|z|<1)$ where $\mu$ is a complex Borel measure on the unit circle and $\alpha >0$. There are two main theorems. The first asserts that if $0<\alpha<1$ and $\sup_{|\zeta|=1} \int^1_0 |f'(r\zeta)| (1-r)^{\alpha-1} \,dr<\infty$ then $f \in {\cal M}_\alpha$. The second asserts that if $0<\alpha \leq 1$, $f \in H^\infty$ and $\sup_t \int^\pi_0 {|f(e^{i(t+s)}) - 2f(e^{it}) + f(e^{i(t-s)})| \over s^{2-\alpha}} \, ds < \infty$ then $f \in {\cal M}_\alpha$. The conditions in these theorems are shown to relate to a number of smoothness conditions on the unit circle for a function analytic in the open unit disk and continuous in its closure.

Categories:30E20, 30D50

© Canadian Mathematical Society, 2018 :