Canadian Mathematical Society
Canadian Mathematical Society
  location:  Publicationsjournals
Search results

Search: MSC category 22 ( Topological groups, Lie groups )

  Expand all        Collapse all Results 126 - 136 of 136

126. CJM 1998 (vol 50 pp. 1105)

Roberts, Brooks
Tempered representations and the theta correspondence
Let $V$ be an even dimensional nondegenerate symmetric bilinear space over a nonarchimedean local field $F$ of characteristic zero, and let $n$ be a nonnegative integer. Suppose that $\sigma \in \Irr \bigl(\OO (V)\bigr)$ and $\pi \in \Irr \bigl(\Sp (n,F)\bigr)$ correspond under the theta correspondence. Assuming that $\sigma$ is tempered, we investigate the problem of determining the Langlands quotient data for $\pi$.

Categories:11F27, 22E50

127. CJM 1998 (vol 50 pp. 972)

Brüchert, Gerd
Trace class elements and cross-sections in Kac-Moody groups
Let $G$ be an affine Kac-Moody group, $\pi_0,\dots,\pi_r,\pi_{\delta}$ its fundamental irreducible representations and $\chi_0, \dots, \chi_r, \chi_{\delta}$ their characters. We determine the set of all group elements $x$ such that all $\pi_i(x)$ act as trace class operators, \ie, such that $\chi_i(x)$ exists, then prove that the $\chi_i$ are class functions. Thus, $\chi:=(\chi_0, \dots, \chi_r, \chi_{\delta})$ factors to an adjoint quotient $\bar{\chi}$ for $G$. In a second part, following Steinberg, we define a cross-section $C$ for the potential regular classes in $G$. We prove that the restriction $\chi|_C$ behaves well algebraically. Moreover, we obtain an action of $\hbox{\Bbbvii C}^{\times}$ on $C$, which leads to a functional identity for $\chi|_C$ which shows that $\chi|_C$ is quasi-homogeneous.

Categories:22E65, 17B67

128. CJM 1998 (vol 50 pp. 356)

Gross, Leonard
Some norms on universal enveloping algebras
The universal enveloping algebra, $U(\frak g)$, of a Lie algebra $\frak g$ supports some norms and seminorms that have arisen naturally in the context of heat kernel analysis on Lie groups. These norms and seminorms are investigated here from an algebraic viewpoint. It is shown that the norms corresponding to heat kernels on the associated Lie groups decompose as product norms under the natural isomorphism $U(\frak g_1 \oplus \frak g_2) \cong U(\frak g_1) \otimes U(\frak g_2)$. The seminorms corresponding to Green's functions are examined at a purely Lie algebra level for $\rmsl(2,\Bbb C)$. It is also shown that the algebraic dual space $U'$ is spanned by its finite rank elements if and only if $\frak g$ is nilpotent.

Categories:17B35, 16S30, 22E30

129. CJM 1998 (vol 50 pp. 74)

Flicker, Yuval Z.
Elementary proof of the fundamental lemma for a unitary group
The fundamental lemma in the theory of automorphic forms is proven for the (quasi-split) unitary group $U(3)$ in three variables associated with a quadratic extension of $p$-adic fields, and its endoscopic group $U(2)$, by means of a new, elementary technique. This lemma is a prerequisite for an application of the trace formula to classify the automorphic and admissible representations of $U(3)$ in terms of those of $U(2)$ and base change to $\GL(3)$. It compares the (unstable) orbital integral of the characteristic function of the standard maximal compact subgroup $K$ of $U(3)$ at a regular element (whose centralizer $T$ is a torus), with an analogous (stable) orbital integral on the endoscopic group $U(2)$. The technique is based on computing the sum over the double coset space $T\bs G/K$ which describes the integral, by means of an intermediate double coset space $H\bs G/K$ for a subgroup $H$ of $G=U(3)$ containing $T$. Such an argument originates from Weissauer's work on the symplectic group. The lemma is proven for both ramified and unramified regular elements, for which endoscopy occurs (the stable conjugacy class is not a single orbit).

Categories:22E35, 11F70, 11F85, 11S37

130. CJM 1997 (vol 49 pp. 1117)

Hu, Zhiguo
The von Neumann algebra $\VN(G)$ of a locally compact group and quotients of its subspaces
Let $\VN(G)$ be the von Neumann algebra of a locally compact group $G$. We denote by $\mu$ the initial ordinal with $\abs{\mu}$ equal to the smallest cardinality of an open basis at the unit of $G$ and $X= \{\alpha; \alpha < \mu \}$. We show that if $G$ is nondiscrete then there exist an isometric $*$-isomorphism $\kappa$ of $l^{\infty}(X)$ into $\VN(G)$ and a positive linear mapping $\pi$ of $\VN(G)$ onto $l^{\infty}(X)$ such that $\pi\circ\kappa = \id_{l^{\infty}(X)}$ and $\kappa$ and $\pi$ have certain additional properties. Let $\UCB (\hat{G})$ be the $C^{*}$-algebra generated by operators in $\VN(G)$ with compact support and $F(\hat{G})$ the space of all $T \in \VN(G)$ such that all topologically invariant means on $\VN(G)$ attain the same value at $T$. The construction of the mapping $\pi$ leads to the conclusion that the quotient space $\UCB (\hat{G})/F(\hat{G})\cap \UCB(\hat{G})$ has $l^{\infty}(X)$ as a continuous linear image if $G$ is nondiscrete. When $G$ is further assumed to be non-metrizable, it is shown that $\UCB(\hat{G})/F (\hat{G})\cap \UCB(\hat{G})$ contains a linear isomorphic copy of $l^{\infty}(X)$. Similar results are also obtained for other quotient spaces.

Categories:22D25, 43A22, 43A30, 22D15, 43A07, 47D35

131. CJM 1997 (vol 49 pp. 1224)

Ørsted, Bent; Zhang, Genkai
Tensor products of analytic continuations of holomorphic discrete series
We give the irreducible decomposition of the tensor product of an analytic continuation of the holomorphic discrete series of $\SU(2, 2)$ with its conjugate.

Keywords:Holomorphic discrete series, tensor product, spherical function, Clebsch-Gordan coefficient, Plancherel theorem
Categories:22E45, 43A85, 32M15, 33A65

132. CJM 1997 (vol 49 pp. 916)

Brylinski, Ranee
Quantization of the $4$-dimensional nilpotent orbit of SL(3,$\mathbb{R}$)
We give a new geometric model for the quantization of the 4-dimensional conical (nilpotent) adjoint orbit $O_\mathbb{R}$ of SL$(3,\mathbb{R})$. The space of quantization is the space of holomorphic functions on $\mathbb{C}^2- \{ 0 \}$ which are square integrable with respect to a signed measure defined by a Meijer $G$-function. We construct the quantization out a non-flat Kaehler structure on $\mathbb{C}^2 - \{ 0 \}$ (the universal cover of $O_\mathbb{R}$ ) with Kaehler potential $\rho=|z|^4$.

Categories:81S10, 32C17, 22E70

133. CJM 1997 (vol 49 pp. 820)

Robart, Thierry
Sur l'intégrabilité des sous-algèbres de Lie en dimension infinie
Une des questions fondamentales de la th\'eorie des groupes de Lie de dimension infinie concerne l'int\'egrabilit\'e des sous-alg\`ebres de Lie topologiques $\cal H$ de l'alg\`ebre de Lie $\cal G$ d'un groupe de Lie $G$ de dimension infinie au sens de Milnor. Par contraste avec ce qui se passe en th\'eorie classique il peut exister des sous-alg\`ebres de Lie ferm\'ees $\cal H$ de $\cal G$ non-int\'egrables en un sous-groupe de Lie. C'est le cas des alg\`ebres de Lie de champs de vecteurs $C^{\infty}$ d'une vari\'et\'e compacte qui ne d\'efinissent pas un feuilletage de Stefan. Heureusement cette ``imperfection" de la th\'eorie n'est pas partag\'ee par tous les groupes de Lie int\'eressants. C'est ce que montre cet article en exhibant une tr\`es large classe de groupes de Lie de dimension infinie exempte de cette imperfection. Cela permet de traiter compl\`etement le second probl\`eme fondamental de Sophus Lie pour les groupes de jauge de la physique-math\'ematique et les groupes formels de diff\'eomorphismes lisses de $\R^n$ qui fixent l'origine.

Categories:22E65, 58h05, 17B65

134. CJM 1997 (vol 49 pp. 736)

Fendler, Gero
Dilations of one parameter Semigroups of positive Contractions on $L^{\lowercase {p}}$ spaces
It is proved in this note, that a strongly continuous semigroup of (sub)positive contractions acting on an $L^p$-space, for $1
Categories:47D03, 22D12, 43A22

135. CJM 1997 (vol 49 pp. 417)

Boe, Brian D.; Fu, Joseph H. G.
Characteristic cycles in Hermitian symmetric spaces
We give explicit combinatorial expresssions for the characteristic cycles associated to certain canonical sheaves on Schubert varieties $X$ in the classical Hermitian symmetric spaces: namely the intersection homology sheaves $IH_X$ and the constant sheaves $\Bbb C_X$. The three main cases of interest are the Hermitian symmetric spaces for groups of type $A_n$ (the standard Grassmannian), $C_n$ (the Lagrangian Grassmannian) and $D_n$. In particular we find that $CC(IH_X)$ is irreducible for all Schubert varieties $X$ if and only if the associated Dynkin diagram is simply laced. The result for Schubert varieties in the standard Grassmannian had been established earlier by Bressler, Finkelberg and Lunts, while the computations in the $C_n$ and $D_n$ cases are new. Our approach is to compute $CC(\Bbb C_X)$ by a direct geometric method, then to use the combinatorics of the Kazhdan-Lusztig polynomials (simplified for Hermitian symmetric spaces) to compute $CC(IH_X)$. The geometric method is based on the fundamental formula $$CC(\Bbb C_X) = \lim_{r\downarrow 0} CC(\Bbb C_{X_r}),$$ where the $X_r \downarrow X$ constitute a family of tubes around the variety $X$. This formula leads at once to an expression for the coefficients of $CC(\Bbb C_X)$ as the degrees of certain singular maps between spheres.

Categories:14M15, 22E47, 53C65

136. CJM 1997 (vol 49 pp. 133)

Reeder, Mark
Exterior powers of the adjoint representation
Exterior powers of the adjoint representation of a complex semisimple Lie algebra are decomposed into irreducible representations, to varying degrees of satisfaction.

Keywords:Lie algebras, adjoint representation, exterior algebra
Categories:20G05, 20C30, 22E10, 22E60
   1 ... 3 4 5 6    

© Canadian Mathematical Society, 2018 :