26. CJM 2012 (vol 65 pp. 66)
 Deng, Shaoqiang; Hu, Zhiguang

On Flag Curvature of Homogeneous Randers Spaces
In this paper we give an explicit formula for the flag curvature of
homogeneous Randers spaces of Douglas type and apply this formula to
obtain some interesting results. We first deduce an explicit formula
for the flag curvature of an arbitrary left invariant Randers metric
on a twostep nilpotent Lie group. Then we obtain a classification of
negatively curved homogeneous Randers spaces of Douglas type. This
results, in particular, in many examples of homogeneous nonRiemannian
Finsler spaces with negative flag curvature. Finally, we prove a
rigidity result that a homogeneous Randers space of Berwald type whose
flag curvature is everywhere nonzero must be Riemannian.
Keywords:homogeneous Randers manifolds, flag curvature, Douglas spaces, twostep nilpotent Lie groups Categories:22E46, 53C30 

27. CJM 2012 (vol 64 pp. 497)
 Li, WenWei

Le lemme fondamental pondÃ©rÃ© pour le groupe mÃ©taplectique
Dans cet article, on Ã©nonce une variante du lemme fondamental
pondÃ©rÃ© d'Arthur pour le groupe mÃ©taplectique de Weil, qui sera un
ingrÃ©dient indispensable de la stabilisation de la formule des
traces. Pour un corps de caractÃ©ristique rÃ©siduelle suffisamment
grande, on en donne une dÃ©monstration Ã l'aide de la mÃ©thode de
descente, qui est conditionnelle: on admet le lemme fondamental
pondÃ©rÃ© non standard sur les algÃ¨bres de Lie. Vu les travaux de
Chaudouard et Laumon, on s'attend Ã ce que cette condition soit
ultÃ©rieurement vÃ©rifiÃ©e.
Keywords:fundamental lemma, metaplectic group, endoscopy, trace formula Categories:11F70, 11F27, 22E50 

28. CJM 2011 (vol 64 pp. 669)
 Pantano, Alessandra; Paul, Annegret; SalamancaRiba, Susana A.

The Genuine Omegaregular Unitary Dual of the Metaplectic Group
We classify all genuine unitary representations of the metaplectic group whose
infinitesimal character is real and at least as regular as that of the
oscillator representation. In a previous paper we exhibited a certain family
of representations satisfying these conditions, obtained by cohomological
induction from the tensor product of a onedimensional representation and an
oscillator representation. Our main theorem asserts that this family exhausts
the genuine omegaregular unitary dual of the metaplectic group.
Keywords:Metaplectic group, oscillator representation, bottom layer map, cohomological induction, Parthasarathy's Dirac Operator Inequality, pseudospherical principal series Category:22E46 

29. CJM 2011 (vol 64 pp. 123)
 Lee, JaeHyouk

Gosset Polytopes in Picard Groups of del Pezzo Surfaces
In this article, we study the correspondence between the geometry of
del Pezzo surfaces $S_{r}$ and the geometry of the $r$dimensional Gosset
polytopes $(r4)_{21}$. We construct Gosset polytopes $(r4)_{21}$ in
$\operatorname{Pic} S_{r}\otimes\mathbb{Q}$ whose vertices are lines, and we identify
divisor classes in $\operatorname{Pic} S_{r}$ corresponding to $(a1)$simplexes ($a\leq
r$), $(r1)$simplexes and $(r1)$crosspolytopes of the polytope $(r4)_{21}$.
Then we explain how these classes correspond to skew $a$lines($a\leq r$),
exceptional systems, and rulings, respectively.
As an application, we work on the monoidal transform for lines to study the
local geometry of the polytope $(r4)_{21}$. And we show that the Gieser transformation
and the Bertini transformation induce a symmetry of polytopes $3_{21}$ and
$4_{21}$, respectively.
Categories:51M20, 14J26, 22E99 

30. CJM 2011 (vol 64 pp. 481)
 Chamorro, Diego

Some Functional Inequalities on Polynomial Volume Growth Lie Groups
In this article we study some Sobolevtype inequalities on polynomial volume growth Lie groups.
We show in particular that improved Sobolev inequalities can be extended to this general framework
without the use of the LittlewoodPaley decomposition.
Keywords:Sobolev inequalities, polynomial volume growth Lie groups Category:22E30 

31. CJM 2011 (vol 64 pp. 409)
 Rainer, Armin

Lifting Quasianalytic Mappings over Invariants
Let $\rho \colon G \to \operatorname{GL}(V)$ be a rational finite dimensional complex representation of a reductive linear
algebraic group $G$, and let $\sigma_1,\dots,\sigma_n$ be a system of generators of the algebra of
invariant polynomials $\mathbb C[V]^G$.
We study the problem of lifting mappings $f\colon \mathbb R^q \supseteq U \to \sigma(V) \subseteq \mathbb C^n$
over the mapping of invariants
$\sigma=(\sigma_1,\dots,\sigma_n) \colon V \to \sigma(V)$. Note that $\sigma(V)$ can be identified with the categorical quotient $V /\!\!/ G$
and its points correspond bijectively to the closed orbits in $V$. We prove that if $f$ belongs to a quasianalytic subclass
$\mathcal C \subseteq C^\infty$ satisfying some mild closedness properties that guarantee resolution of singularities in
$\mathcal C$,
e.g., the real analytic class, then $f$ admits a lift of the
same class $\mathcal C$ after desingularization by local blowups and local power substitutions.
As a consequence we show that $f$ itself allows for a lift
that belongs to $\operatorname{SBV}_{\operatorname{loc}}$, i.e., special functions of bounded variation.
If $\rho$ is a real representation of a compact Lie group, we obtain stronger versions.
Keywords:lifting over invariants, reductive group representation, quasianalytic mappings, desingularization, bounded variation Categories:14L24, 14L30, 20G20, 22E45 

32. CJM 2011 (vol 63 pp. 1238)
 Bump, Daniel; Nakasuji, Maki

Casselman's Basis of Iwahori Vectors and the Bruhat Order
W. Casselman defined a basis $f_u$ of Iwahori fixed vectors of a spherical
representation $(\pi, V)$ of a split semisimple $p$adic group $G$ over a
nonarchimedean local field $F$ by the condition that it be dual to the
intertwining operators, indexed by elements $u$ of the Weyl group $W$. On
the other hand, there is a natural basis $\psi_u$, and one seeks to find the
transition matrices between the two bases. Thus, let $f_u = \sum_v \tilde{m}
(u, v) \psi_v$ and $\psi_u = \sum_v m (u, v) f_v$. Using the IwahoriHecke
algebra we prove that if a combinatorial condition is satisfied, then $m (u,
v) = \prod_{\alpha} \frac{1  q^{ 1} \mathbf{z}^{\alpha}}{1
\mathbf{z}^{\alpha}}$, where $\mathbf z$ are the Langlands parameters
for the representation and $\alpha$ runs through the set $S (u, v)$ of
positive coroots $\alpha \in \hat{\Phi}$ (the dual root system of $G$) such
that $u \leqslant v r_{\alpha} < v$ with $r_{\alpha}$ the reflection
corresponding to $\alpha$. The condition is conjecturally always satisfied
if $G$ is simplylaced and the KazhdanLusztig polynomial $P_{w_0 v, w_0 u}
= 1$ with $w_0$ the long Weyl group element. There is a similar formula for
$\tilde{m}$ conjecturally satisfied if $P_{u, v} = 1$.
This leads to various combinatorial conjectures.
Keywords:Iwahori fixed vector, Iwahori Hecke algebra, Bruhat order, intertwining integrals Categories:20C08, 20F55, 22E50 

33. CJM 2011 (vol 63 pp. 1364)
 Meinrenken, Eckhard

The Cubic Dirac Operator for InfiniteDimensonal Lie Algebras
Let $\mathfrak{g}=\bigoplus_{i\in\mathbb{Z}} \mathfrak{g}_i$ be an infinitedimensional graded
Lie algebra, with $\dim\mathfrak{g}_i<\infty$, equipped with a nondegenerate
symmetric bilinear form $B$ of degree $0$. The quantum Weil algebra
$\widehat{\mathcal{W}}\mathfrak{g}$ is a completion of the tensor product of the
enveloping and Clifford algebras of $\mathfrak{g}$. Provided that the
KacPeterson class of $\mathfrak{g}$ vanishes, one can construct a cubic Dirac
operator $\mathcal{D}\in\widehat{\mathcal{W}}(\mathfrak{g})$, whose square is a quadratic Casimir
element. We show that this condition holds for symmetrizable
KacMoody algebras. Extending Kostant's arguments, one obtains
generalized WeylKac character formulas for suitable ``equal rank''
Lie subalgebras of KacMoody algebras. These extend the formulas of
G. Landweber for affine Lie algebras.
Categories:22E65, 15A66 

34. CJM 2011 (vol 63 pp. 1307)
 Dimitrov, Ivan; Penkov, Ivan

A BottBorelWeil Theorem for Diagonal Indgroups
A diagonal indgroup is a direct limit of classical affine algebraic
groups of growing rank under a class of
inclusions that contains the inclusion
$$
SL(n)\to SL(2n), \quad
M\mapsto \begin{pmatrix}M & 0 \\ 0 & M \end{pmatrix}
$$
as a typical special case. If $G$ is a diagonal indgroup and
$B\subset G$ is a Borel indsubgroup,
we consider the indvariety $G/B$ and compute the cohomology
$H^\ell(G/B,\mathcal{O}_{\lambda})$
of any $G$equivariant line bundle $\mathcal{O}_{\lambda}$ on
$G/B$. It has been known that, for a generic $\lambda$,
all cohomology groups of $\mathcal{O}_{\lambda}$ vanish, and that a
nongeneric equivariant
line bundle $\mathcal{O}_{\lambda}$ has at most one
nonzero cohomology group. The new result of this paper is a
precise description of when
$H^j(G/B,\mathcal{O}_{\lambda})$ is nonzero and the proof of the fact
that, whenever nonzero,
$H^j(G/B, \mathcal{O}_{\lambda})$ is a $G$module dual to a highest
weight module.
The main difficulty is in defining an appropriate analog $W_B$ of the
Weyl group, so that the action of $W_B$
on weights of $G$ is compatible with the analog of the Demazure
``action" of the Weyl group on the cohomology
of line bundles. The highest weight corresponding to $H^j(G/B,
\mathcal{O}_{\lambda})$ is then computed
by a procedure similar to that in the classical BottBorelWeil theorem.
Categories:22E65, 20G05 

35. CJM 2011 (vol 63 pp. 1137)
 Moy, Allen

Distribution Algebras on padic Groups and Lie Algebras
When $F$ is a $p$adic field, and $G={\mathbb
G}(F)$ is the group of $F$rational points of a connected algebraic
$F$group, the complex vector space ${\mathcal H}(G)$ of compactly
supported locally constant distributions on $G$ has a natural
convolution product that makes it into a ${\mathbb C}$algebra
(without an identity) called the Hecke algebra. The Hecke algebra is a
partial analogue for $p$adic groups of the enveloping algebra of a
Lie group. However, $\mathcal{H}(G)$ has drawbacks such as the lack of
an identity element, and the process $G \mapsto \mathcal{H}(G)$
is not a functor. Bernstein introduced an enlargement
$\mathcal{H}\,\hat{\,}(G)$
of $\mathcal{H}(G)$. The algebra
$\mathcal{H}\,\hat{\,} (G)$ consists of the distributions that are left
essentially compact. We show that the process $G \mapsto
\mathcal{H}\,\hat{\,} (G)$ is a functor. If $\tau \colon G \rightarrow
H$ is a morphism of $p$adic groups, let $F(\tau) \colon
\mathcal{H}\,\hat{\,} (G) \rightarrow \mathcal{H}\,\hat{\,} (H)$ be
the morphism of $\mathbb{C}$algebras. We identify the kernel of
$F(\tau)$ in terms of $\textrm{Ker}(\tau)$. In the setting of $p$adic
Lie algebras, with $\mathfrak{g}$ a reductive Lie algebra,
$\mathfrak{m}$ a Levi, and $\tau \colon \mathfrak{g} \to \mathfrak{m}$ the
natural projection, we show that $F(\tau)$ maps $G$invariant distributions
on $\mathcal{G}$ to $N_G (\mathfrak{m})$invariant distributions on
$\mathfrak{m}$. Finally, we exhibit a natural family of $G$invariant
essentially compact distributions on $\mathfrak{g}$ associated with a
$G$invariant nondegenerate symmetric bilinear form on ${\mathfrak g}$
and in the case of $SL(2)$ show how certain members of the family can
be moved to the group.
Keywords:distribution algebra, padic group Categories:22E50, 22E35 

36. CJM 2011 (vol 63 pp. 1083)
 Kaletha, Tasho

Decomposition of Splitting Invariants in Split Real Groups
For a maximal torus in a quasisplit semisimple simplyconnected group over a local field of characteristic $0$,
Langlands and Shelstad constructed a
cohomological invariant called the splitting invariant, which is an important
component of their endoscopic transfer factors. We study this invariant in the
case of a split real group and prove a
decomposition theorem which expresses this invariant for a general torus as a product of the corresponding
invariants for simple tori. We also show how this reduction formula allows for the comparison of splitting invariants
between different tori in the given real group.
Keywords:endoscopy, real lie group, splitting invariant, transfer factor Categories:11F70, 22E47, 11S37, 11F72, 17B22 

37. CJM 2011 (vol 63 pp. 798)
 Daws, Matthew

Representing Multipliers of the Fourier Algebra on NonCommutative $L^p$ Spaces
We show that the multiplier algebra of the Fourier algebra on a
locally compact group $G$ can be isometrically represented on a direct
sum on noncommutative $L^p$ spaces associated with the right von
Neumann algebra of $G$. The resulting image is the idealiser of the
image of the Fourier algebra. If these spaces are given their
canonical operator space structure, then we get a completely isometric
representation of the completely bounded multiplier algebra. We make
a careful study of the noncommutative $L^p$ spaces we construct and
show that they are completely isometric to those considered recently
by Forrest, Lee, and Samei. We improve a result of theirs about module
homomorphisms. We suggest a definition of a FigaTalamancaHerz
algebra built out of these noncommutative $L^p$ spaces, say
$A_p(\widehat G)$. It is shown that $A_2(\widehat G)$ is isometric to
$L^1(G)$, generalising the abelian situation.
Keywords:multiplier, Fourier algebra, noncommutative $L^p$ space, complex interpolation Categories:43A22, 43A30, 46L51, 22D25, 42B15, 46L07, 46L52 

38. CJM 2011 (vol 63 pp. 1107)
 Liu, Baiying

Genericity of Representations of pAdic $Sp_{2n}$ and Local Langlands Parameters
Let $G$ be the $F$rational points of the symplectic group $Sp_{2n}$,
where $F$ is a nonArchimedean local field
of characteristic
$0$. Cogdell, Kim, PiatetskiShapiro, and Shahidi
constructed local Langlands functorial lifting from irreducible
generic representations of $G$ to irreducible representations of
$GL_{2n+1}(F)$.
Jiang and Soudry constructed the descent map from irreducible
supercuspidal representations of $GL_{2n+1}(F)$ to those of $G$,
showing that the local Langlands functorial lifting from the
irreducible supercuspidal generic representations is surjective. In
this paper, based on above results, using the same descent method of
studying $SO_{2n+1}$ as Jiang and Soudry, we will show the rest
of local Langlands functorial lifting is also surjective, and for any
local Langlands parameter $\phi \in \Phi(G)$, we construct a
representation $\sigma$ such that $\phi$ and $\sigma$ have the same
twisted local factors. As one application, we prove the $G$case of a
conjecture of
GrossPrasad and Rallis, that is, a local Langlands parameter $\phi
\in \Phi(G)$ is generic, i.e., the representation attached to
$\phi$ is generic, if and only if the adjoint $L$function of $\phi$
is holomorphic at $s=1$. As another application, we prove for each
Arthur parameter $\psi$, and the corresponding local Langlands
parameter
$\phi_{\psi}$, the representation attached to $\phi_{\psi}$
is generic if and only if $\phi_{\psi}$ is tempered.
Keywords:generic representations, local Langlands parameters Categories:22E50, 11S37 

39. CJM 2011 (vol 63 pp. 591)
40. CJM 2011 (vol 63 pp. 327)
 Jantzen, Chris

Discrete Series for $p$adic $SO(2n)$ and Restrictions of Representations of $O(2n)$
In this paper we give a classification of discrete series for
$SO(2n,F)$, $F$ $p$adic, similar to that of
MÅglinTadiÄ for
the other classical groups. This is obtained by taking the
MÅglinTadiÄ classification for $O(2n,F)$ and studying how the
representations restrict to $SO(2n,F)$. We then extend this to an
analysis of how admissible representations of $O(2n,F)$ restrict.
Category:22E50 

41. CJM 2010 (vol 62 pp. 1340)
42. CJM 2010 (vol 62 pp. 1310)
 Lee, KyuHwan

IwahoriHecke Algebras of $SL_2$ over $2$Dimensional Local Fields
In this paper we construct an analogue of IwahoriHecke algebras of $\operatorname{SL}_2$ over $2$dimensional local fields. After considering coset decompositions of double cosets of a Iwahori subgroup, we define a convolution product on the space of certain functions on $\operatorname{SL}_2$, and prove that the product is welldefined, obtaining a Hecke algebra. Then we investigate the structure of the Hecke algebra. We determine the center of the Hecke algebra and consider IwahoriMatsumoto type relations.
Categories:22E50, 20G25 

43. CJM 2010 (vol 62 pp. 914)
 Zorn, Christian

Reducibility of the Principal Series for Sp^{~}_{2}(F) over a padic Field
Let $G_n=\mathrm{Sp}_n(F)$ be the rank $n$ symplectic group with
entries in a nondyadic $p$adic field $F$. We further let $\widetilde{G}_n$ be
the metaplectic extension of $G_n$ by $\mathbb{C}^{1}=\{z\in\mathbb{C}^{\times}
\mid z=1\}$ defined using the Leray cocycle. In this paper, we aim to
demonstrate the complete list of reducibility points of the genuine
principal series of ${\widetilde{G}_2}$. In most cases, we will use
some techniques developed by TadiÄ that analyze the Jacquet
modules with respect to all of the parabolics containing a fixed
Borel. The exceptional cases involve representations induced from
unitary characters $\chi$ with $\chi^2=1$. Because such
representations $\pi$ are unitary, to show the irreducibility of
$\pi$, it suffices to show that
$\dim_{\mathbb{C}}\mathrm{Hom}_{{\widetilde{G}}}(\pi,\pi)=1$. We will accomplish this
by examining the poles of certain intertwining operators associated to
simple roots. Then some results of Shahidi and Ban decompose arbitrary
intertwining operators into a composition of operators corresponding
to the simple roots of ${\widetilde{G}_2}$. We will then be able to
show that all such operators have poles at principal series
representations induced from quadratic characters and therefore such
operators do not extend to operators in
$\mathrm{Hom}_{{\widetilde{G}_2}}(\pi,\pi)$ for the $\pi$ in question.
Categories:22E50, 11F70 

44. CJM 2010 (vol 62 pp. 1116)
 Jin, Yongyang; Zhang, Genkai

Degenerate pLaplacian Operators and Hardy Type Inequalities on
HType Groups
Let $\mathbb G$ be a steptwo nilpotent group of Htype with Lie algebra $\mathfrak G=V\oplus \mathfrak t$. We define a class of vector fields $X=\{X_j\}$ on $\mathbb G$ depending on a real parameter $k\ge 1$, and we consider the corresponding $p$Laplacian operator $L_{p,k} u= \operatorname{div}_X (\nabla_{X} u^{p2} \nabla_X u)$. For $k=1$ the vector fields $X=\{X_j\}$ are the left invariant vector fields corresponding to an orthonormal basis of $V$; for $\mathbb G$ being the Heisenberg group the vector fields are the Greiner fields. In this paper we obtain the fundamental solution for the operator $L_{p,k}$ and as an application, we get a Hardy type inequality associated with $X$.
Keywords:fundamental solutions, degenerate Laplacians, Hardy inequality, Htype groups Categories:35H30, 26D10, 22E25 

45. CJM 2010 (vol 62 pp. 563)
46. CJM 2009 (vol 62 pp. 94)
47. CJM 2009 (vol 62 pp. 52)
 Deng, Shaoqiang

An Algebraic Approach to Weakly Symmetric Finsler Spaces
In this paper, we introduce a new algebraic notion, weakly symmetric
Lie algebras, to give an algebraic description of an
interesting class of homogeneous RiemannFinsler spaces, weakly symmetric
Finsler spaces. Using this new definition, we are able to give a
classification of weakly symmetric Finsler spaces with dimensions $2$
and $3$. Finally, we show that all the nonRiemannian reversible weakly
symmetric Finsler spaces we find are nonBerwaldian and with vanishing
Scurvature. This means that reversible nonBerwaldian Finsler spaces
with vanishing Scurvature may exist at large. Hence the generalized
volume comparison theorems due to Z. Shen are valid for a rather large
class of Finsler spaces.
Keywords:weakly symmetric Finsler spaces, weakly symmetric Lie algebras, Berwald spaces, Scurvature Categories:53C60, 58B20, 22E46, 22E60 

48. CJM 2009 (vol 61 pp. 1375)
 Spallone, Steven

Stable Discrete Series Characters at Singular Elements
Write $\Theta^E$ for the stable discrete series character associated
with an irreducible finitedimensional representation $E$ of a connected
real reductive group $G$. Let $M$ be the centralizer of the split
component of a maximal torus $T$, and denote by $\Phi_M(\gm,\Theta^E)$
Arthur's extension of $ D_M^G(\gm)^{\lfrac 12}
\Theta^E(\gm)$ to $T(\R)$. In this paper we give a simple
explicit expression for
$\Phi_M(\gm,\Theta^E)$ when $\gm$ is elliptic in $G$. We do not assume $\gm$ is regular.
Category:22E47 

49. CJM 2009 (vol 61 pp. 1407)
 Will, Pierre

Traces, CrossRatios and 2Generator Subgroups of $\SU(2,1)$
In this work, we investigate how to decompose a pair $(A,B)$ of
loxodromic isometries of the complex hyperbolic plane $\mathbf H^{2}_{\mathbb C}$ under
the form $A=I_1I_2$ and $B=I_3I_2$, where the $I_k$'s are
involutions. The main result is a decomposability criterion, which
is expressed in terms of traces of elements of the group $\langle
A,B\rangle$.
Categories:14L24, 22E40, 32M15, 51M10 

50. CJM 2009 (vol 61 pp. 1325)
 Nien, Chufeng

Uniqueness of Shalika Models
Let $\BF_q$ be a finite field of $q$ elements, $\CF$ a $p$adic field,
and $D$ a quaternion division algebra over $\CF$. This paper proves
uniqueness of Shalika models for $\GL_{2n}(\BF_q) $ and $\GL_{2n}(D)$,
and reobtains uniqueness of Shalika models for $\GL_{2n}(\CF)$ for
any $n\in \BN$.
Keywords:Shalika models, linear models, uniqueness, multiplicity free Category:22E50 
