26. CJM 2013 (vol 66 pp. 481)
 Aguiar, Marcelo; Mahajan, Swapneel

On the Hadamard Product of Hopf Monoids
Combinatorial structures that compose and decompose give rise to Hopf monoids
in Joyal's category of species. The Hadamard product of two Hopf monoids
is another Hopf monoid. We prove two main results regarding freeness of
Hadamard products. The first one states
that if one factor is connected and the other is free as a monoid,
their Hadamard product is free (and connected).
The second provides an explicit basis for the Hadamard
product when both factors are free.
The first main result is obtained by showing the existence of a oneparameter deformation
of the comonoid structure and appealing to a rigidity result of Loday and Ronco
that applies when the parameter is set to zero.
To obtain the second result, we introduce an operation on species that is intertwined
by the free monoid functor with the Hadamard product.
As an application of the first result, we deduce that the Boolean transform
of the dimension sequence of a connected Hopf monoid is nonnegative.
Keywords:species, Hopf monoid, Hadamard product, generating function, Boolean transform Categories:16T30, 18D35, 20B30, 18D10, 20F55 

27. CJM 2013 (vol 66 pp. 354)
 Kellerhals, Ruth; Kolpakov, Alexander

The Minimal Growth Rate of Cocompact Coxeter Groups in Hyperbolic 3space
Due to work of W. Parry it is known that the growth
rate of a hyperbolic Coxeter group acting cocompactly on ${\mathbb H^3}$
is a Salem number. This being the arithmetic situation, we prove that the simplex group
(3,5,3) has smallest growth rate among all cocompact hyperbolic
Coxeter groups, and that it is as such unique.
Our approach provides a different proof for
the analog situation in ${\mathbb H^2}$
where E. Hironaka identified Lehmer's number as the minimal growth
rate among all cocompact planar hyperbolic Coxeter groups and showed
that it is (uniquely) achieved by the Coxeter triangle group (3,7).
Keywords:hyperbolic Coxeter group, growth rate, Salem number Categories:20F55, 22E40, 51F15 

28. CJM 2013 (vol 66 pp. 205)
 Iovanov, Miodrag Cristian

Generalized Frobenius Algebras and Hopf Algebras
"CoFrobenius" coalgebras were introduced as dualizations of
Frobenius algebras.
We previously showed
that they admit
leftright symmetric characterizations analogue to those of Frobenius
algebras. We consider the more general quasicoFrobenius (QcF)
coalgebras; the first main result in this paper is that these also
admit symmetric characterizations: a coalgebra is QcF if it is weakly
isomorphic to its (left, or right) rational dual $Rat(C^*)$, in the
sense that certain coproduct or product powers of these objects are
isomorphic. Fundamental results of Hopf algebras, such as the
equivalent characterizations of Hopf algebras with nonzero integrals
as left (or right) coFrobenius, QcF, semiperfect or with nonzero
rational dual, as well as the uniqueness of integrals and a short
proof of the bijectivity of the antipode for such Hopf algebras all
follow as a consequence of these results. This gives a purely
representation theoretic approach to many of the basic fundamental
results in the theory of Hopf algebras. Furthermore, we introduce a
general concept of Frobenius algebra, which makes sense for infinite
dimensional and for topological algebras, and specializes to the
classical notion in the finite case. This will be a topological
algebra $A$ that is isomorphic to its complete topological dual
$A^\vee$. We show that $A$ is a (quasi)Frobenius algebra if and only
if $A$ is the dual $C^*$ of a (quasi)coFrobenius coalgebra $C$. We
give many examples of coFrobenius coalgebras and Hopf algebras
connected to category theory, homological algebra and the newer
qhomological algebra, topology or graph theory, showing the
importance of the concept.
Keywords:coalgebra, Hopf algebra, integral, Frobenius, QcF, coFrobenius Categories:16T15, 18G35, 16T05, 20N99, 18D10, 05E10 

29. CJM 2011 (vol 64 pp. 241)
 Allcock, Daniel

Triangles of BaumslagSolitar Groups
Our main result is that many triangles of BaumslagSolitar groups
collapse to finite groups, generalizing a famous example of Hirsch and
other examples due to several authors. A triangle of BaumslagSolitar
groups means a group with three generators, cyclically ordered, with
each generator conjugating some power of the previous one to another
power. There are six parameters, occurring in pairs, and we show that
the triangle fails to be developable whenever one of the parameters
divides its partner, except for a few special cases. Furthermore,
under fairly general conditions, the group turns out to be finite and
solvable of derived length $\leq3$. We obtain a lot of information about
finite quotients, even when we cannot determine developability.
Categories:20F06, 20F65 

30. CJM 2011 (vol 64 pp. 409)
 Rainer, Armin

Lifting Quasianalytic Mappings over Invariants
Let $\rho \colon G \to \operatorname{GL}(V)$ be a rational finite dimensional complex representation of a reductive linear
algebraic group $G$, and let $\sigma_1,\dots,\sigma_n$ be a system of generators of the algebra of
invariant polynomials $\mathbb C[V]^G$.
We study the problem of lifting mappings $f\colon \mathbb R^q \supseteq U \to \sigma(V) \subseteq \mathbb C^n$
over the mapping of invariants
$\sigma=(\sigma_1,\dots,\sigma_n) \colon V \to \sigma(V)$. Note that $\sigma(V)$ can be identified with the categorical quotient $V /\!\!/ G$
and its points correspond bijectively to the closed orbits in $V$. We prove that if $f$ belongs to a quasianalytic subclass
$\mathcal C \subseteq C^\infty$ satisfying some mild closedness properties that guarantee resolution of singularities in
$\mathcal C$,
e.g., the real analytic class, then $f$ admits a lift of the
same class $\mathcal C$ after desingularization by local blowups and local power substitutions.
As a consequence we show that $f$ itself allows for a lift
that belongs to $\operatorname{SBV}_{\operatorname{loc}}$, i.e., special functions of bounded variation.
If $\rho$ is a real representation of a compact Lie group, we obtain stronger versions.
Keywords:lifting over invariants, reductive group representation, quasianalytic mappings, desingularization, bounded variation Categories:14L24, 14L30, 20G20, 22E45 

31. CJM 2011 (vol 63 pp. 1238)
 Bump, Daniel; Nakasuji, Maki

Casselman's Basis of Iwahori Vectors and the Bruhat Order
W. Casselman defined a basis $f_u$ of Iwahori fixed vectors of a spherical
representation $(\pi, V)$ of a split semisimple $p$adic group $G$ over a
nonarchimedean local field $F$ by the condition that it be dual to the
intertwining operators, indexed by elements $u$ of the Weyl group $W$. On
the other hand, there is a natural basis $\psi_u$, and one seeks to find the
transition matrices between the two bases. Thus, let $f_u = \sum_v \tilde{m}
(u, v) \psi_v$ and $\psi_u = \sum_v m (u, v) f_v$. Using the IwahoriHecke
algebra we prove that if a combinatorial condition is satisfied, then $m (u,
v) = \prod_{\alpha} \frac{1  q^{ 1} \mathbf{z}^{\alpha}}{1
\mathbf{z}^{\alpha}}$, where $\mathbf z$ are the Langlands parameters
for the representation and $\alpha$ runs through the set $S (u, v)$ of
positive coroots $\alpha \in \hat{\Phi}$ (the dual root system of $G$) such
that $u \leqslant v r_{\alpha} < v$ with $r_{\alpha}$ the reflection
corresponding to $\alpha$. The condition is conjecturally always satisfied
if $G$ is simplylaced and the KazhdanLusztig polynomial $P_{w_0 v, w_0 u}
= 1$ with $w_0$ the long Weyl group element. There is a similar formula for
$\tilde{m}$ conjecturally satisfied if $P_{u, v} = 1$.
This leads to various combinatorial conjectures.
Keywords:Iwahori fixed vector, Iwahori Hecke algebra, Bruhat order, intertwining integrals Categories:20C08, 20F55, 22E50 

32. CJM 2011 (vol 63 pp. 1307)
 Dimitrov, Ivan; Penkov, Ivan

A BottBorelWeil Theorem for Diagonal Indgroups
A diagonal indgroup is a direct limit of classical affine algebraic
groups of growing rank under a class of
inclusions that contains the inclusion
$$
SL(n)\to SL(2n), \quad
M\mapsto \begin{pmatrix}M & 0 \\ 0 & M \end{pmatrix}
$$
as a typical special case. If $G$ is a diagonal indgroup and
$B\subset G$ is a Borel indsubgroup,
we consider the indvariety $G/B$ and compute the cohomology
$H^\ell(G/B,\mathcal{O}_{\lambda})$
of any $G$equivariant line bundle $\mathcal{O}_{\lambda}$ on
$G/B$. It has been known that, for a generic $\lambda$,
all cohomology groups of $\mathcal{O}_{\lambda}$ vanish, and that a
nongeneric equivariant
line bundle $\mathcal{O}_{\lambda}$ has at most one
nonzero cohomology group. The new result of this paper is a
precise description of when
$H^j(G/B,\mathcal{O}_{\lambda})$ is nonzero and the proof of the fact
that, whenever nonzero,
$H^j(G/B, \mathcal{O}_{\lambda})$ is a $G$module dual to a highest
weight module.
The main difficulty is in defining an appropriate analog $W_B$ of the
Weyl group, so that the action of $W_B$
on weights of $G$ is compatible with the analog of the Demazure
``action" of the Weyl group on the cohomology
of line bundles. The highest weight corresponding to $H^j(G/B,
\mathcal{O}_{\lambda})$ is then computed
by a procedure similar to that in the classical BottBorelWeil theorem.
Categories:22E65, 20G05 

33. CJM 2010 (vol 63 pp. 413)
 Konvalinka, Matjaž; Skandera, Mark

Generating Functions for Hecke Algebra Characters
Certain polynomials in $n^2$ variables that serve as generating
functions for symmetric group characters are sometimes called
($S_n$) character immanants.
We point out a close connection between the identities of
LittlewoodMerrisWatkins
and GouldenJackson, which relate $S_n$ character immanants
to the determinant, the permanent and MacMahon's Master Theorem.
From these results we obtain a generalization
of Muir's identity.
Working with the quantum polynomial ring and the Hecke algebra
$H_n(q)$, we define quantum immanants that are generating
functions for Hecke algebra characters.
We then prove quantum analogs of the LittlewoodMerrisWatkins identities
and selected GouldenJackson identities
that relate $H_n(q)$ character immanants to
the quantum determinant, quantum permanent, and quantum Master Theorem
of GaroufalidisL\^eZeilberger.
We also obtain a generalization of Zhang's quantization of Muir's
identity.
Keywords:determinant, permanent, immanant, Hecke algebra character, quantum polynomial ring Categories:15A15, 20C08, 81R50 

34. CJM 2010 (vol 62 pp. 1310)
 Lee, KyuHwan

IwahoriHecke Algebras of $SL_2$ over $2$Dimensional Local Fields
In this paper we construct an analogue of IwahoriHecke algebras of $\operatorname{SL}_2$ over $2$dimensional local fields. After considering coset decompositions of double cosets of a Iwahori subgroup, we define a convolution product on the space of certain functions on $\operatorname{SL}_2$, and prove that the product is welldefined, obtaining a Hecke algebra. Then we investigate the structure of the Hecke algebra. We determine the center of the Hecke algebra and consider IwahoriMatsumoto type relations.
Categories:22E50, 20G25 

35. CJM 2010 (vol 62 pp. 481)
 CasalsRuiz, Montserrat; Kazachkov, Ilya V.

Elements of Algebraic Geometry and the Positive Theory of Partially Commutative Groups
The first main result of the paper is a criterion for a partially commutative group $\mathbb G$ to be a domain. It allows us to reduce the study of algebraic sets over $\mathbb G$ to the study of irreducible algebraic sets, and reduce the elementary theory of $\mathbb G$ (of a coordinate group over $\mathbb G$) to the elementary theories of the direct factors of $\mathbb G$ (to the elementary theory of coordinate groups of irreducible algebraic sets). Then we establish normal forms for quantifierfree formulas over a nonabelian directly indecomposable partially commutative group $\mathbb H$. Analogously to the case of free groups, we introduce the notion of a generalised equation and prove that the positive theory of $\mathbb H$ has quantifier elimination and that arbitrary firstorder formulas lift from $\mathbb H$ to $\mathbb H\ast F$, where $F$ is a free group of finite rank. As a consequence, the positive theory of an arbitrary partially commutative group is decidable.
Categories:20F10, 03C10, 20F06 

36. CJM 2009 (vol 62 pp. 34)
 Campbell, Peter S.; Nevins, Monica

Branching Rules for Ramified Principal Series Representations of $\mathrm{GL}(3)$ over a $p$adic Field
We decompose the restriction of ramified principal series
representations of the $p$adic group $\mathrm{GL}(3,\mathrm{k})$ to its
maximal compact subgroup $K=\mathrm{GL}(3,R)$. Its decomposition is
dependent on the degree of ramification of the inducing characters and
can be characterized in terms of filtrations of the Iwahori subgroup
in $K$. We establish several irreducibility results and illustrate
the decomposition with some examples.
Keywords:principal series representations, branching rules, maximal compact subgroups, representations of $p$adic groups Categories:20G25, 20G05 

37. CJM 2009 (vol 61 pp. 740)
 Caprace, PierreEmmanuel; Haglund, Frédéric

On Geometric Flats in the CAT(0) Realization of Coxeter Groups and Tits Buildings
Given a complete CAT(0) space $X$ endowed with a geometric action of a group $\Gamma$, it is known that if
$\Gamma$ contains a free abelian group of rank $n$, then $X$ contains a geometric flat of dimension $n$. We
prove the converse of this statement in the special case where $X$ is a convex subcomplex of the CAT(0)
realization of a Coxeter group $W$, and $\Gamma$ is a subgroup of $W$. In particular a convex cocompact subgroup
of a Coxeter group is Gromovhyperbolic if and only if it does not contain a free abelian group of rank 2. Our
result also provides an explicit control on geometric flats in the CAT(0) realization of arbitrary Tits
buildings.
Keywords:Coxeter group, flat rank, $\cat0$ space, building Categories:20F55, 51F15, 53C23, 20E42, 51E24 

38. CJM 2009 (vol 61 pp. 950)
 Tange, Rudolf

Infinitesimal Invariants in a Function Algebra
Let $G$ be a reductive connected linear algebraic group
over an algebraically closed field of positive
characteristic and let $\g$ be its Lie algebra.
First we extend a wellknown result about the Picard group of a
semisimple group to reductive groups.
Then we prove that if the derived group is simply connected
and $\g$ satisfies a
mild condition, the algebra $K[G]^\g$ of regular functions
on $G$ that are invariant under the action of $\g$ derived
from the conjugation action is a unique factorisation domain.
Categories:20G15, 13F15 

39. CJM 2009 (vol 61 pp. 691)
 Yu, Xiaoxiang

Prehomogeneity on QuasiSplit Classical Groups and Poles of Intertwining Operators
Suppose that $P=MN$ is a maximal parabolic subgroup of a quasisplit,
connected, reductive classical group $G$ defined over a nonArchimedean
field and $A$ is the standard intertwining operator attached to a
tempered representation of $G$ induced from $M$. In this paper we
determine all the cases in which $\Lie(N)$ is
prehomogeneous under $\Ad(m)$ when $N$ is nonabelian, and give necessary
and sufficient conditions for $A$ to have a pole at $0$.
Categories:22E50, 20G05 

40. CJM 2009 (vol 61 pp. 708)
 Zelenyuk, Yevhen

Regular Homeomorphisms of Finite Order on Countable Spaces
We present a structure theorem for a broad class of homeomorphisms of
finite order on countable zero dimensional spaces. As applications we
show the following.
\begin{compactenum}[\rm(a)]
\item Every countable nondiscrete topological group not containing an
open Boolean subgroup can be partitioned into infinitely many dense
subsets.
\item If $G$ is a countably infinite Abelian group with finitely many
elements of order $2$ and $\beta G$ is the Stone\v Cech
compactification of $G$ as a discrete semigroup, then for every
idempotent $p\in\beta G\setminus\{0\}$, the subset
$\{p,p\}\subset\beta G$ generates algebraically the free product of
oneelement semigroups $\{p\}$ and~$\{p\}$.
\end{compactenum}
Keywords:Homeomorphism, homogeneous space, topological group, resolvability, Stone\v Cech compactification Categories:22A30, 54H11, 20M15, 54A05 

41. CJM 2008 (vol 60 pp. 1001)
42. CJM 2007 (vol 59 pp. 828)
 Ortner, Ronald; Woess, Wolfgang

NonBacktracking Random Walks and Cogrowth of Graphs
Let $X$ be a locally finite, connected graph without vertices of
degree $1$. Nonbacktracking random walk moves at each step with equal
probability to one of the ``forward'' neighbours of the actual state,
\emph{i.e.,} it does not go back along
the preceding edge to the preceding
state. This is not a Markov chain, but can be turned into a Markov
chain whose state space is the set of oriented edges of $X$. Thus we
obtain for infinite $X$ that the $n$step nonbacktracking transition
probabilities tend to zero, and we can also compute their limit when
$X$ is finite. This provides a short proof of old results concerning
cogrowth of groups, and makes the extension of that result to
arbitrary regular graphs rigorous. Even when $X$ is nonregular, but
\emph{small cycles are dense in} $X$, we show that the graph $X$ is
nonamenable if and only if the nonbacktracking $n$step transition
probabilities decay exponentially fast. This is a partial
generalization of the cogrowth criterion for regular graphs which
comprises the original cogrowth criterion for finitely generated
groups of Grigorchuk and Cohen.
Keywords:graph, oriented line grap, covering tree, random walk, cogrowth, amenability Categories:05C75, 60G50, 20F69 

43. CJM 2007 (vol 59 pp. 449)
 Badulescu, Alexandru Ioan

$\SL_n$, Orthogonality Relations and Transfer
Let $\pi$ be a square integrable representation of
$G'=\SL_n(D)$, with $D$ a central division algebra of finite dimension
over a local field $F$ \emph{of nonzero characteristic}. We prove
that, on the elliptic set, the character of $\pi$ equals the complex
conjugate of the orbital integral of one of the pseudocoefficients
of~$\pi$. We prove also the orthogonality relations for characters of
square integrable representations of $G'$. We prove the stable
transfer of orbital integrals between $\SL_n(F)$ and its inner forms.
Category:20G05 

44. CJM 2007 (vol 59 pp. 296)
 Chein, Orin; Goodaire, Edgar G.

Bol Loops of Nilpotence Class Two
Call a nonMoufang Bol loop \emph{minimally nonMoufang}
if every proper subloop is Moufang and
\emph{minimally nonassociative} if every proper subloop is
associative. We prove that these concepts are
the same for Bol loops which are nilpotent of
class two and in which certain associators square to $1$.
In the process, we derive many commutator and associator identities
which hold in such loops.
Keywords:Bol loop, Moufang loop, nilpotent, commutator, associator, minimally nonassociative Category:20N05 

45. CJM 2007 (vol 59 pp. 418)
 Stoimenow, A.

On Cabled Knots and Vassiliev Invariants (Not) Contained in Knot Polynomials
It is known that the BrandtLickorishMillettHo polynomial $Q$
contains Casson's knot invariant. Whether there are (essentially)
other Vassiliev knot invariants obtainable from $Q$ is an open
problem. We show that this is not so up to degree $9$. We also
give the (apparently) first examples of knots not distinguished
by 2cable HOMFLY polynomials which are not mutants. Our calculations
provide evidence of a negative answer to the question whether Vassiliev
knot invariants of degree $d \le 10$ are determined by the HOMFLY and
Kauffman polynomials and their 2cables, and for the existence of
algebras of such Vassiliev invariants not isomorphic to the algebras
of their weight systems.
Categories:57M25, 57M27, 20F36, 57M50 

46. CJM 2006 (vol 58 pp. 1144)
 Hamana, Masamichi

Partial $*$Automorphisms, Normalizers, and Submodules in Monotone Complete $C^*$Algebras
For monotone complete $C^*$algebras
$A\subset B$ with $A$ contained in $B$ as a monotone closed
$C^*$subalgebra, the relation $X = AsA$
gives a bijection between the set of all
monotone closed linear subspaces $X$ of $B$ such that
$AX + XA \subset X$
and
$XX^* + X^*X \subset A$
and a set of certain partial
isometries $s$ in the ``normalizer" of $A$ in $B$,
and similarly for the map $s \mapsto \Ad s$
between the latter set and a set of certain ``partial $*$automorphisms"
of $A$.
We introduce natural inverse semigroup
structures in the set of such $X$'s and the set of
partial $*$automorphisms of $A$, modulo a certain relation, so that
the composition of these maps induces an inverse semigroup
homomorphism between them.
For a large enough $B$ the homomorphism becomes surjective and
all the partial $*$automorphisms of
$A$ are realized via partial isometries in $B$.
In particular, the inverse semigroup associated with
a type ${\rm II}_1$ von Neumann factor,
modulo the outer automorphism group,
can be viewed as the fundamental group of the factor.
We also consider the $C^*$algebra version of these results.
Categories:46L05, 46L08, 46L40, 20M18 

47. CJM 2006 (vol 58 pp. 897)
 Courtès, François

Distributions invariantes sur les groupes rÃ©ductifs quasidÃ©ployÃ©s
Soit $F$ un corps local non archim\'edien, et $G$ le groupe des
$F$points d'un groupe r\'eductif connexe quasid\'eploy\'e d\'efini sur $F$.
Dans cet article, on s'int\'eresse aux distributions sur $G$ invariantes
par conjugaison, et \`a l'espace de leurs restrictions \`a l'alg\`ebre de
Hecke $\mathcal{H}$ des fonctions sur $G$ \`a support compact
biinvariantes par un sousgroupe d'Iwahori $I$ donn\'e. On montre tout
d'abord que les valeurs d'une telle distribution sur $\mathcal{H}$
sont enti\`erement d\'etermin\'ees par sa restriction au sousespace de
dimension finie des \'el\'ements de $\mathcal{H}$ \`a support dans la
r\'eunion des sousgroupes parahoriques de $G$ contenant $I$. On utilise
ensuite cette propri\'et\'e pour montrer, moyennant certaines conditions
sur $G$, que cet espace est engendr\'e d'une part par certaines
int\'egrales orbitales semisimples, d'autre part par les int\'egrales
orbitales unipotentes, en montrant tout d'abord des r\'esultats
analogues sur les groupes finis.
Keywords:reductive $p$adic groups, orbital integrals, invariant distributions Categories:22E35, 20G40 

48. CJM 2006 (vol 58 pp. 23)
 DabbaghianAbdoly, Vahid

Constructing Representations of Finite Simple Groups and Covers
Let $G$ be a finite group and $\chi$ be an irreducible character of $G$. An efficient
and simple method to construct representations of finite groups is applicable
whenever $G$ has a subgroup $H$ such that $\chi_H$
has a linear constituent with multiplicity $1$.
In this paper we show (with a few exceptions) that if $G$
is a simple group or a covering group of a simple group and
$\chi$ is an irreducible character of $G$ of degree less than 32,
then there exists a subgroup $H$ (often a Sylow subgroup) of $G$
such that $\chi_H$ has a linear constituent with multiplicity $1$.
Keywords:group representations, simple groups, central covers, irreducible representations Categories:20C40, 20C15 

49. CJM 2005 (vol 57 pp. 1056)
 Ozawa, Narutaka; Rieffel, Marc A.

Hyperbolic Group $C^*$Algebras and FreeProduct $C^*$Algebras as Compact Quantum Metric Spaces
Let $\ell$ be a length function on a group $G$, and let $M_{\ell}$
denote the
operator of pointwise multiplication by $\ell$ on $\bell^2(G)$.
Following Connes,
$M_{\ell}$ can be used as a ``Dirac'' operator for $C_r^*(G)$. It defines a
Lipschitz seminorm on $C_r^*(G)$, which defines a metric on the state space of
$C_r^*(G)$. We show that if $G$ is a hyperbolic group and if $\ell$ is
a wordlength function on $G$, then the topology from this metric
coincides with the
weak$*$ topology (our definition of a ``compact quantum metric
space''). We show that a convenient framework is that of filtered
$C^*$algebras which satisfy a suitable ``Haageruptype'' condition. We
also use this
framework to prove an analogous fact for certain reduced
free products of $C^*$algebras.
Categories:46L87, 20F67, 46L09 

50. CJM 2005 (vol 57 pp. 648)
 Nevins, Monica

Branching Rules for Principal Series Representations of $SL(2)$ over a $p$adic Field
We explicitly describe the decomposition into irreducibles of
the restriction of the principal
series representations of $SL(2,k)$, for $k$ a $p$adic field,
to each of its two maximal compact subgroups (up to conjugacy).
We identify these irreducible subrepresentations in the
Kirillovtype classification
of Shalika. We go on to explicitly describe the decomposition
of the reducible principal series of $SL(2,k)$ in terms of the
restrictions of its irreducible constituents to a maximal compact
subgroup.
Keywords:representations of $p$adic groups, $p$adic integers, orbit method, $K$types Categories:20G25, 22E35, 20H25 
