1. CJM Online first
 Mackaaij, Marco; Tubbenhauer, Daniel

Twocolor Soergel calculus and simple transitive 2representations
In this paper we complete the ADElike
classification
of simple transitive $2$representations
of Soergel bimodules
in finite dihedral type, under the assumption of gradeability.
In particular, we use bipartite
graphs and zigzag algebras of ADE type to give an explicit
construction of a graded (nonstrict)
version of all these $2$representations.
Moreover,
we give simple combinatorial
criteria for when two such $2$representations are
equivalent and for when their Grothendieck groups
give rise to isomorphic representations.
Finally, our construction
also gives a large class of simple transitive $2$representations
in infinite dihedral type for general bipartite graphs.
Keywords:$2$representation theory, categorification, Soergel bimodule, KazhdanLusztig theory, Hecke algebras for dihedral groups, zigzag algebra Categories:20C08, 17B10, 18D05, 18D10, 20F55 

2. CJM 2017 (vol 69 pp. 992)
 Bremner, Murray; Dotsenko, Vladimir

Classification of Regular Parametrized Onerelation Operads
JeanLouis Loday introduced a class of symmetric operads generated
by one bilinear operation subject to one
relation making each leftnormed product of three elements equal
to a linear combination
of rightnormed products:
\[
(a_1a_2)a_3=\sum_{\sigma\in S_3}x_\sigma\, a_{\sigma(1)}(a_{\sigma(2)}a_{\sigma(3)})\
;
\]
such an operad is called a parametrized onerelation operad.
For a particular choice of parameters $\{x_\sigma\}$,
this operad is said to be regular if each of its components is
the regular representation of the symmetric group; equivalently, the corresponding free algebra on a vector space $V$ is, as a
graded vector space, isomorphic to the tensor
algebra of $V$. We classify, over an algebraically closed field
of characteristic zero, all regular parametrized onerelation
operads.
In fact, we prove that each such operad is isomorphic to one
of the following five operads: the leftnilpotent operad
defined by the relation $((a_1a_2)a_3)=0$, the associative operad,
the Leibniz operad, the dual Leibniz (Zinbiel) operad, and the
Poisson operad.
Our computational methods combine linear algebra over polynomial
rings, representation theory of the symmetric group, and
GrÃ¶bner bases for determinantal ideals and their radicals.
Keywords:parametrized onerelation algebra, algebraic operad, Koszul duality, representation theory of the symmetric group, determinantal ideal, GrÃ¶bner basis Categories:18D50, 13B25, 13P10, 13P15, 15A54, 1704, , , , , 17A30, 17A50, 20C30, 68W30 

3. CJM 2016 (vol 69 pp. 767)
 Choi, Suyoung; Park, Hanchul

Wedge Operations and Torus Symmetries II
A fundamental idea in toric topology is that classes of manifolds
with wellbehaved torus actions (simply, toric spaces) are classified
by pairs of simplicial complexes and (nonsingular) characteristic
maps. The authors in their previous paper provided a new way
to find all characteristic maps on a simplicial complex $K(J)$
obtainable by a sequence of wedgings from $K$. The main idea
was that characteristic maps on $K$ theoretically determine all
possible characteristic maps on a wedge of $K$.
In this work, we further develop our previous work for classification
of toric spaces. For a starshaped simplicial sphere $K$ of dimension
$n1$ with $m$ vertices, the Picard number $\operatorname{Pic}(K)$ of $K$ is
$mn$. We refer to $K$ as a seed if $K$ cannot be obtained
by wedgings. First, we show that, for a fixed positive integer
$\ell$, there are at most finitely many seeds of Picard number
$\ell$ supporting characteristic maps. As a corollary, the conjecture
proposed by V.V. Batyrev in 1991 is solved affirmatively.
Second, we investigate a systematic method to find all characteristic
maps on $K(J)$ using combinatorial objects called (realizable)
puzzles that only depend on a seed $K$.
These two facts lead to a practical way to classify the toric
spaces of fixed Picard number.
Keywords:puzzle, toric variety, simplicial wedge, characteristic map Categories:57S25, 14M25, 52B11, 13F55, 18A10 

4. CJM 2016 (vol 69 pp. 687)
 Ovchinnikov, Alexey; Wibmer, Michael

Tannakian Categories with Semigroup Actions
Ostrowski's theorem implies that $\log(x),\log(x+1),\dots$ are
algebraically independent over $\mathbb{C}(x)$. More generally, for
a linear differential or difference equation, it is an important
problem to find all algebraic dependencies among a nonzero solution
$y$ and particular transformations of $y$, such as derivatives
of $y$ with respect to parameters, shifts of the arguments, rescaling,
etc. In the present paper, we develop a theory of Tannakian categories
with semigroup actions, which will be used to attack such questions
in full generality, as each linear differential equation gives
rise to a Tannakian category.
Deligne studied actions of braid groups on categories and obtained
a finite collection of axioms that characterizes such actions
to apply it to various geometric constructions. In this paper,
we find a finite set of axioms that characterizes actions of
semigroups that are finite free products of semigroups of the
form $\mathbb{N}^n\times
\mathbb{Z}/{n_1}\mathbb{Z}\times\cdots\times\mathbb{Z}/{n_r}\mathbb{Z}$
on Tannakian categories. This is the class of semigroups that
appear in many applications.
Keywords:semigroup actions on categories, Tannakian categories, difference algebraic groups, differential and difference equations with parameters Categories:18D10, 12H10, 20G05, 33C05, 33C80, 34K06 

5. CJM 2015 (vol 67 pp. 1091)
 Mine, Kotaro; Yamashita, Atsushi

Metric Compactifications and Coarse Structures
Let $\mathbf{TB}$ be the category of totally bounded, locally
compact metric spaces
with the $C_0$ coarse structures. We show that if $X$ and $Y$
are in $\mathbf{TB}$ then $X$ and $Y$ are coarsely equivalent
if and only if their Higson coronas are homeomorphic. In fact,
the Higson corona functor gives an equivalence of categories
$\mathbf{TB}\to\mathbf{K}$, where $\mathbf{K}$ is the category
of compact metrizable spaces. We use this fact to show that the
continuously controlled coarse structure on a locally compact
space $X$ induced by some metrizable compactification $\tilde{X}$
is determined only by the topology of the remainder $\tilde{X}\setminus
X$.
Keywords:coarse geometry, Higson corona, continuously controlled coarse structure, uniform continuity, boundary at infinity Categories:18B30, 51F99, 53C23, 54C20 

6. CJM 2014 (vol 67 pp. 28)
 Asadollahi, Javad; Hafezi, Rasool; Vahed, Razieh

Bounded Derived Categories of Infinite Quivers: Grothendieck Duality, Reflection Functor
We study bounded derived categories of the category of representations of infinite quivers over a ring $R$. In case $R$ is a commutative noetherian ring with a dualising complex, we investigate an equivalence similar to Grothendieck duality for these categories, while a notion of dualising complex does not apply to them. The quivers we consider are left, resp. right, rooted quivers that are either noetherian or their opposite are noetherian. We also consider reflection functor and generalize a result of Happel to noetherian rings of finite global dimension, instead of fields.
Keywords:derived category, Grothendieck duality, representation of quivers, reflection functor Categories:18E30, 16G20, 18E40, 16D90, 18A40 

7. CJM 2013 (vol 66 pp. 481)
 Aguiar, Marcelo; Mahajan, Swapneel

On the Hadamard Product of Hopf Monoids
Combinatorial structures that compose and decompose give rise to Hopf monoids
in Joyal's category of species. The Hadamard product of two Hopf monoids
is another Hopf monoid. We prove two main results regarding freeness of
Hadamard products. The first one states
that if one factor is connected and the other is free as a monoid,
their Hadamard product is free (and connected).
The second provides an explicit basis for the Hadamard
product when both factors are free.
The first main result is obtained by showing the existence of a oneparameter deformation
of the comonoid structure and appealing to a rigidity result of Loday and Ronco
that applies when the parameter is set to zero.
To obtain the second result, we introduce an operation on species that is intertwined
by the free monoid functor with the Hadamard product.
As an application of the first result, we deduce that the Boolean transform
of the dimension sequence of a connected Hopf monoid is nonnegative.
Keywords:species, Hopf monoid, Hadamard product, generating function, Boolean transform Categories:16T30, 18D35, 20B30, 18D10, 20F55 

8. CJM 2013 (vol 66 pp. 205)
 Iovanov, Miodrag Cristian

Generalized Frobenius Algebras and Hopf Algebras
"CoFrobenius" coalgebras were introduced as dualizations of
Frobenius algebras.
We previously showed
that they admit
leftright symmetric characterizations analogue to those of Frobenius
algebras. We consider the more general quasicoFrobenius (QcF)
coalgebras; the first main result in this paper is that these also
admit symmetric characterizations: a coalgebra is QcF if it is weakly
isomorphic to its (left, or right) rational dual $Rat(C^*)$, in the
sense that certain coproduct or product powers of these objects are
isomorphic. Fundamental results of Hopf algebras, such as the
equivalent characterizations of Hopf algebras with nonzero integrals
as left (or right) coFrobenius, QcF, semiperfect or with nonzero
rational dual, as well as the uniqueness of integrals and a short
proof of the bijectivity of the antipode for such Hopf algebras all
follow as a consequence of these results. This gives a purely
representation theoretic approach to many of the basic fundamental
results in the theory of Hopf algebras. Furthermore, we introduce a
general concept of Frobenius algebra, which makes sense for infinite
dimensional and for topological algebras, and specializes to the
classical notion in the finite case. This will be a topological
algebra $A$ that is isomorphic to its complete topological dual
$A^\vee$. We show that $A$ is a (quasi)Frobenius algebra if and only
if $A$ is the dual $C^*$ of a (quasi)coFrobenius coalgebra $C$. We
give many examples of coFrobenius coalgebras and Hopf algebras
connected to category theory, homological algebra and the newer
qhomological algebra, topology or graph theory, showing the
importance of the concept.
Keywords:coalgebra, Hopf algebra, integral, Frobenius, QcF, coFrobenius Categories:16T15, 18G35, 16T05, 20N99, 18D10, 05E10 

9. CJM 2012 (vol 65 pp. 241)
 Aguiar, Marcelo; Lauve, Aaron

Lagrange's Theorem for Hopf Monoids in Species
Following Radford's proof of Lagrange's theorem for pointed Hopf algebras,
we prove Lagrange's theorem for Hopf monoids in the category of
connected species.
As a corollary, we obtain necessary conditions for a given subspecies
$\mathbf k$ of a Hopf monoid $\mathbf h$ to be a Hopf submonoid: the quotient of
any one of the generating series of $\mathbf h$ by the corresponding
generating series of $\mathbf k$ must have nonnegative coefficients. Other
corollaries include a necessary condition for a sequence of
nonnegative integers to be the
dimension sequence of a Hopf monoid
in the form of certain polynomial inequalities, and of
a settheoretic Hopf monoid in the form of certain linear inequalities.
The latter express that the binomial transform of the sequence must be nonnegative.
Keywords:Hopf monoids, species, graded Hopf algebras, Lagrange's theorem, generating series, PoincarÃ©BirkhoffWitt theorem, Hopf kernel, Lie kernel, primitive element, partition, composition, linear order, cyclic order, derangement Categories:05A15, 05A20, 05E99, 16T05, 16T30, 18D10, 18D35 

10. CJM 2011 (vol 63 pp. 1345)
 Jardine, J. F.

Pointed Torsors
This paper gives a characterization of homotopy fibres of inverse
image maps on groupoids of torsors that are induced by geometric
morphisms, in terms of both pointed torsors and pointed cocycles,
suitably defined. Cocycle techniques are used to give a complete
description of such fibres, when the underlying geometric morphism is
the canonical stalk on the classifying topos of a profinite group
$G$. If the torsors in question are defined with respect to a constant
group $H$, then the path components of the fibre can be identified with
the set of continuous maps from the profinite group $G$ to the group
$H$. More generally, when $H$ is not constant, this set of path components
is the set of continuous maps from a proobject in sheaves of
groupoids to $H$, which proobject can be viewed as a ``Grothendieck
fundamental groupoid".
Keywords:pointed torsors, pointed cocycles, homotopy fibres Categories:18G50, 14F35, 55B30 

11. CJM 2011 (vol 63 pp. 1388)
 Misamore, Michael D.

Nonabelian $H^1$ and the Ãtale Van Kampen Theorem
Generalized Ã©tale homotopy progroups $\pi_1^{\operatorname{Ã©t}}(Ä{C}, x)$
associated with pointed, connected, small Grothendieck
sites $(\mathcal{C}, x)$ are defined, and their relationship to Galois
theory and the theory of pointed torsors for discrete
groups is explained.
Applications include new rigorous proofs of some folklore results
around $\pi_1^{\operatorname{Ã©t}}(Ã©t(X), x)$, a description of
Grothendieck's short exact sequence for Galois descent in terms of
pointed torsor trivializations, and a new Ã©tale
van Kampen theorem that gives a simple statement about a pushout
square of progroups that works for covering
families that do not necessarily consist exclusively of
monomorphisms. A corresponding van Kampen result for
Grothendieck's profinite groups $\pi_1^{\mathrm{Gal}}$ immediately follows.
Keywords:Ã©tale homotopy theory, simplicial sheaves Categories:18G30, 14F35 

12. CJM 2009 (vol 62 pp. 614)
 Pronk, Dorette; Scull, Laura

Translation Groupoids and Orbifold Cohomology
We show that the bicategory of (representable) orbifolds and good maps is equivalent to the bicategory of orbifold translation groupoids and generalized equivariant maps, giving a mechanism for transferring results from equivariant homotopy theory to the orbifold category. As an application, we use this result to define orbifold versions of a couple of equivariant cohomology theories: Ktheory and Bredon cohomology for certain coefficient diagrams.
Keywords:orbifolds, equivariant homotopy theory, translation groupoids, bicategories of fractions Categories:57S15, 55N91, 19L47, 18D05, 18D35 

13. CJM 2009 (vol 61 pp. 315)
14. CJM 2008 (vol 60 pp. 1240)
 Beliakova, Anna; Wehrli, Stephan

Categorification of the Colored Jones Polynomial and Rasmussen Invariant of Links
We define a family of formal Khovanov brackets
of a colored link depending on two parameters.
The isomorphism classes of these brackets are
invariants of framed colored links.
The BarNatan functors applied to these brackets
produce Khovanov and Lee homology theories categorifying the colored
Jones polynomial. Further,
we study conditions under which
framed colored link cobordisms induce chain transformations between
our formal brackets. We conjecture that
for special choice of parameters, Khovanov and Lee homology theories
of colored links are functorial (up to sign).
Finally, we extend the Rasmussen invariant to links and give examples
where this invariant is a stronger obstruction to sliceness
than the multivariable LevineTristram signature.
Keywords:Khovanov homology, colored Jones polynomial, slice genus, movie moves, framed cobordism Categories:57M25, 57M27, 18G60 

15. CJM 2008 (vol 60 pp. 348)
 Santos, F. Guillén; Navarro, V.; Pascual, P.; Roig, Agust{\'\i}

Monoidal Functors, Acyclic Models and Chain Operads
We prove that for a topological operad $P$ the operad of oriented
cubical singular chains, $C^{\ord}_\ast(P)$, and the operad of
simplicial singular chains, $S_\ast(P)$, are weakly equivalent. As
a consequence, $C^{\ord}_\ast(P\nsemi\mathbb{Q})$ is formal if and only
if $S_\ast(P\nsemi\mathbb{Q})$ is formal, thus linking together some
formality results which are spread out in the literature. The proof
is based on an acyclic models theorem for monoidal functors. We
give different variants of the acyclic models theorem and apply
the contravariant case to study the cohomology theories for
simplicial sets defined by $R$simplicial differential graded
algebras.
Categories:18G80, 55N10, 18D50 

16. CJM 2007 (vol 59 pp. 465)
 Barr, Michael; Kennison, John F.; Raphael, R.

Searching for Absolute $\mathcal{CR}$Epic Spaces
In previous papers, Barr and Raphael investigated the situation of a
topological space $Y$ and a subspace $X$ such that the induced map
$C(Y)\to C(X)$ is an epimorphism in the category $\CR$ of commutative
rings (with units). We call such an embedding a $\CR$epic embedding
and we say that $X$ is absolute $\CR$epic if every embedding of $X$
is $\CR$epic. We continue this investigation. Our most notable
result shows that a Lindel\"of space $X$ is absolute $\CR$epic if a
countable intersection of $\beta X$neighbourhoods of $X$ is a $\beta
X$neighbourhood of $X$. This condition is stable under countable
sums, the formation of closed subspaces, cozerosubspaces, and being
the domain or codomain of a perfect map. A strengthening of the
Lindel\"of property leads to a new class with the same closure
properties that is also closed under finite products. Moreover, all
\scompact spaces and all Lindel\"of $P$spaces satisfy this stronger
condition. We get some results in the nonLindel\"of case that are
sufficient to show that the Dieudonn\'e plank and some closely related
spaces are absolute $\CR$epic.
Keywords:absolute $\mathcal{CR}$epics, countable neighbourhoo9d property, amply LindelÃ¶f, DiuedonnÃ© plank Categories:18A20, 54C45, 54B30 

17. CJM 2005 (vol 57 pp. 1121)
 Barr, Michael; Raphael, R.; Woods, R. G.

On $\mathcal{CR}$epic Embeddings and Absolute $\mathcal{CR}$epic Spaces
We study Tychonoff spaces $X$ with the property that, for all
topological embeddings $X\to Y $, the induced map $C(Y) \to C(X)$ is an
epimorphism of rings. Such spaces are called \good. The simplest
examples of \good spaces are $\sigma$compact locally compact spaces and
\Lin $P$spaces. We show that \good first countable spaces must be
locally compact.
However, a ``bad'' class of \good spaces is exhibited whose pathology
settles, in the negative, a number of open questions. Spaces which are
not \good abound, and some are presented.
Categories:18A20, 54C45, 54B30 

18. CJM 2003 (vol 55 pp. 766)
 Kerler, Thomas

Homology TQFT's and the AlexanderReidemeister Invariant of 3Manifolds via Hopf Algebras and Skein Theory
We develop an explicit skeintheoretical algorithm to compute the
Alexander polynomial of a 3manifold from a surgery presentation
employing the methods used in the construction of quantum invariants
of 3manifolds. As a prerequisite we establish and prove a rather
unexpected equivalence between the topological quantum field theory
constructed by Frohman and Nicas using the homology of
$U(1)$representation varieties on the one side and the
combinatorially constructed Hennings TQFT based on the quasitriangular
Hopf algebra $\mathcal{N} = \mathbb{Z}/2 \ltimes \bigwedge^*
\mathbb{R}^2$ on the other side. We find that both TQFT's are $\SL
(2,\mathbb{R})$equivariant functors and, as such, are isomorphic.
The $\SL (2,\mathbb{R})$action in the Hennings construction comes
from the natural action on $\mathcal{N}$ and in the case of the
FrohmanNicas theory from the HardLefschetz decomposition of the
$U(1)$moduli spaces given that they are naturally K\"ahler. The
irreducible components of this TQFT, corresponding to simple
representations of $\SL(2,\mathbb{Z})$ and $\Sp(2g,\mathbb{Z})$, thus
yield a large family of homological TQFT's by taking sums and products.
We give several examples of TQFT's and invariants that appear to fit
into this family, such as Milnor and Reidemeister Torsion,
SeibergWitten theories, Casson type theories for homology circles
{\it \`a la} Donaldson, higher rank gauge theories following Frohman
and Nicas, and the $\mathbb{Z}/p\mathbb{Z}$ reductions of
ReshetikhinTuraev theories over the cyclotomic integers $\mathbb{Z}
[\zeta_p]$. We also conjecture that the Hennings TQFT for
quantum$\mathfrak{sl}_2$ is the product of the ReshetikhinTuraev
TQFT and such a homological TQFT.
Categories:57R56, 14D20, 16W30, 17B37, 18D35, 57M27 

19. CJM 2002 (vol 54 pp. 1319)
 Yekutieli, Amnon

The Continuous Hochschild Cochain Complex of a Scheme
Let $X$ be a separated finite type scheme over a noetherian base ring
$\mathbb{K}$. There is a complex $\widehat{\mathcal{C}}^{\cdot} (X)$
of topological $\mathcal{O}_X$modules, called the complete Hochschild
chain complex of $X$. To any $\mathcal{O}_X$module
$\mathcal{M}$not necessarily quasicoherentwe assign the complex
$\mathcal{H}om^{\cont}_{\mathcal{O}_X} \bigl(
\widehat{\mathcal{C}}^{\cdot} (X), \mathcal{M} \bigr)$ of continuous
Hochschild cochains with values in $\mathcal{M}$. Our first main
result is that when $X$ is smooth over $\mathbb{K}$ there is a
functorial isomorphism
$$
\mathcal{H}om^{\cont}_{\mathcal{O}_X} \bigl(
\widehat{\mathcal{C}}^{\cdot} (X), \mathcal{M} \bigr) \cong \R
\mathcal{H}om_{\mathcal{O}_{X^2}} (\mathcal{O}_X, \mathcal{M})
$$
in the derived category $\mathsf{D} (\Mod \mathcal{O}_{X^2})$, where
$X^2 := X \times_{\mathbb{K}} X$.
The second main result is that if $X$ is smooth of relative dimension
$n$ and $n!$ is invertible in $\mathbb{K}$, then the standard maps
$\pi \colon \widehat{\mathcal{C}}^{q} (X) \to \Omega^q_{X/
\mathbb{K}}$ induce a quasiisomorphism
$$
\mathcal{H}om_{\mathcal{O}_X} \Bigl( \bigoplus_q \Omega^q_{X/
\mathbb{K}} [q], \mathcal{M} \Bigr) \to
\mathcal{H}om^{\cont}_{\mathcal{O}_X} \bigl(
\widehat{\mathcal{C}}^{\cdot} (X), \mathcal{M} \bigr).
$$
When $\mathcal{M} = \mathcal{O}_X$ this is the quasiisomorphism
underlying the Kontsevich Formality Theorem.
Combining the two results above we deduce a decomposition of the
global Hochschild cohomology
$$
\Ext^i_{\mathcal{O}_{X^2}} (\mathcal{O}_X, \mathcal{M}) \cong
\bigoplus_q \H^{iq} \Bigl( X, \bigl( \bigwedge^q_{\mathcal{O}_X}
\mathcal{T}_{X/\mathbb{K}} \bigr) \otimes_{\mathcal{O}_X} \mathcal{M}
\Bigr),
$$
where $\mathcal{T}_{X/\mathbb{K}}$ is the relative tangent sheaf.
Keywords:Hochschild cohomology, schemes, derived categories Categories:16E40, 14F10, 18G10, 13H10 

20. CJM 2002 (vol 54 pp. 970)
21. CJM 2002 (vol 54 pp. 1100)
 Wood, Peter J.

The Operator Biprojectivity of the Fourier Algebra
In this paper, we investigate projectivity in the category of operator
spaces. In particular, we show that the Fourier algebra of a locally
compact group $G$ is operator biprojective if and only if $G$ is
discrete.
Keywords:locally compact group, Fourier algebra, operator space, projective Categories:13D03, 18G25, 43A95, 46L07, 22D99 

22. CJM 2000 (vol 52 pp. 1310)
 Yagunov, Serge

On the Homology of $\GL_n$ and Higher PreBloch Groups
For every integer $n>1$ and infinite field $F$ we construct a spectral
sequence converging to the homology of $\GL_n(F)$ relative to the
group of monomial matrices $\GM_n(F)$. Some entries in $E^2$terms of
these spectral sequences may be interpreted as a natural
generalization of the Bloch group to higher dimensions. These groups
may be characterized as homology of $\GL_n$ relatively to $\GL_{n1}$
and $\GM_n$. We apply the machinery developed to the investigation of
stabilization maps in homology of General Linear Groups.
Categories:19D55, 20J06, 18G60 

23. CJM 2000 (vol 52 pp. 225)
 Alonso Tarrío, Leovigildo; Jeremías López, Ana; Souto Salorio, María José

Localization in Categories of Complexes and Unbounded Resolutions
In this paper we show that for a Grothendieck category $\A$ and a
complex $E$ in $\CC(\A)$ there is an associated localization
endofunctor $\ell$ in $\D(\A)$. This means that $\ell$ is
idempotent (in a natural way) and that the objects that go to 0 by
$\ell$ are those of the smallest localizing (= triangulated and
stable for coproducts) subcategory of $\D(\A)$ that contains $E$.
As applications, we construct Kinjective resolutions for complexes
of objects of $\A$ and derive Brown representability for $\D(\A)$
from the known result for $\D(R\text{}\mathbf{mod})$, where $R$ is
a ring with unit.
Categories:18E30, 18E15, 18E35 

24. CJM 1999 (vol 51 pp. 294)
 Enochs, Edgar E.; Herzog, Ivo

A Homotopy of Quiver Morphisms with Applications to Representations
It is shown that a morphism of quivers having a certain path
lifting property has a decomposition that mimics the decomposition
of maps of topological spaces into homotopy equivalences composed
with fibrations. Such a decomposition enables one to describe the
right adjoint of the restriction of the representation functor
along a morphism of quivers having this path lifting property.
These right adjoint functors are used to construct injective
representations of quivers. As an application, the injective
representations of the cyclic quivers are classified when the base
ring is left noetherian. In particular, the indecomposable
injective representations are described in terms of the injective
indecomposable $R$modules and the injective indecomposable
$R[x,x^{1}]$modules.
Categories:18A40, 16599 

25. CJM 1999 (vol 51 pp. 3)
 Allday, C.; Puppe, V.

On a Conjecture of Goresky, Kottwitz and MacPherson
We settle a conjecture of Goresky, Kottwitz and MacPherson related
to Koszul duality, \ie, to the correspondence between differential
graded modules over the exterior algebra and those over the
symmetric algebra.
Keywords:Koszul duality, HirschBrown model Categories:13D25, 18E30, 18G35, 55U15 
