CMS/SMC
Canadian Mathematical Society
www.cms.math.ca
  location:  Publicationsjournals
Publications        
Search results

Search: MSC category 17 ( Nonassociative rings and algebras )

  Expand all        Collapse all Results 51 - 57 of 57

51. CJM 1998 (vol 50 pp. 356)

Gross, Leonard
Some norms on universal enveloping algebras
The universal enveloping algebra, $U(\frak g)$, of a Lie algebra $\frak g$ supports some norms and seminorms that have arisen naturally in the context of heat kernel analysis on Lie groups. These norms and seminorms are investigated here from an algebraic viewpoint. It is shown that the norms corresponding to heat kernels on the associated Lie groups decompose as product norms under the natural isomorphism $U(\frak g_1 \oplus \frak g_2) \cong U(\frak g_1) \otimes U(\frak g_2)$. The seminorms corresponding to Green's functions are examined at a purely Lie algebra level for $\rmsl(2,\Bbb C)$. It is also shown that the algebraic dual space $U'$ is spanned by its finite rank elements if and only if $\frak g$ is nilpotent.

Categories:17B35, 16S30, 22E30

52. CJM 1998 (vol 50 pp. 225)

Benkart, Georgia
Derivations and invariant forms of Lie algebras graded by finite root systems
Lie algebras graded by finite reduced root systems have been classified up to isomorphism. In this paper we describe the derivation algebras of these Lie algebras and determine when they possess invariant bilinear forms. The results which we develop to do this are much more general and apply to Lie algebras that are completely reducible with respect to the adjoint action of a finite-dimensional subalgebra.

Categories:17B20, 17B70, 17B25

53. CJM 1998 (vol 50 pp. 210)

Zhao, Kaiming
Isomorphisms between generalized Cartan type $W$ Lie algebras in characteristic $0$
In this paper, we determine when two simple generalized Cartan type $W$ Lie algebras $W_d (A, T, \varphi)$ are isomorphic, and discuss the relationship between the Jacobian conjecture and the generalized Cartan type $W$ Lie algebras.

Keywords:Simple Lie algebras, the general Lie algebra, generalized Cartan type $W$ Lie algebras, isomorphism, Jacobian conjecture
Categories:17B40, 17B65, 17B56, 17B68

54. CJM 1997 (vol 49 pp. 1206)

Letzter, Gail
Subalgebras which appear in quantum Iwasawa decompositions
Let $g$ be a semisimple Lie algebra. Quantum analogs of the enveloping algebra of the fixed Lie subalgebra are introduced for involutions corresponding to the negative of a diagram automorphism. These subalgebras of the quantized enveloping algebra specialize to their classical counterparts. They are used to form an Iwasawa type decompostition and begin a study of quantum Harish-Chandra modules.

Category:17B37

55. CJM 1997 (vol 49 pp. 772)

Jie, Xiao
Finite dimensional representations of $U_t\bigl(\rmsl (2)\bigr)$ at roots of unity
All finite dimensional indecomposable representations of $U_t (\rmsl (2))$ at roots of $1$ are determined.

Categories:16G10, 16G70, 17B37

56. CJM 1997 (vol 49 pp. 820)

Robart, Thierry
Sur l'intégrabilité des sous-algèbres de Lie en dimension infinie
Une des questions fondamentales de la th\'eorie des groupes de Lie de dimension infinie concerne l'int\'egrabilit\'e des sous-alg\`ebres de Lie topologiques $\cal H$ de l'alg\`ebre de Lie $\cal G$ d'un groupe de Lie $G$ de dimension infinie au sens de Milnor. Par contraste avec ce qui se passe en th\'eorie classique il peut exister des sous-alg\`ebres de Lie ferm\'ees $\cal H$ de $\cal G$ non-int\'egrables en un sous-groupe de Lie. C'est le cas des alg\`ebres de Lie de champs de vecteurs $C^{\infty}$ d'une vari\'et\'e compacte qui ne d\'efinissent pas un feuilletage de Stefan. Heureusement cette ``imperfection" de la th\'eorie n'est pas partag\'ee par tous les groupes de Lie int\'eressants. C'est ce que montre cet article en exhibant une tr\`es large classe de groupes de Lie de dimension infinie exempte de cette imperfection. Cela permet de traiter compl\`etement le second probl\`eme fondamental de Sophus Lie pour les groupes de jauge de la physique-math\'ematique et les groupes formels de diff\'eomorphismes lisses de $\R^n$ qui fixent l'origine.

Categories:22E65, 58h05, 17B65

57. CJM 1997 (vol 49 pp. 119)

Osborn, J. Marshall
Automorphisms of the Lie algebras $W^*$ in characteristic $0$
No abstract.

Categories:17B40, 17B65, 17B66, 17B68, 17B70
Page
   1 2 3    

© Canadian Mathematical Society, 2018 : https://cms.math.ca/