1. CJM Online first
 BenaychGeorges, Florent; Cébron, Guillaume; Rochet, Jean

Fluctuation of matrix entries and application to outliers of elliptic matrices
For any family of $N\times N$ random matrices $(\mathbf{A}_k)_{k\in
K}$ which is invariant, in law, under unitary conjugation, we
give general sufficient conditions for central limit theorems
for random variables of the type $\operatorname{Tr}(\mathbf{A}_k
\mathbf{M})$, where the matrix $\mathbf{M}$ is deterministic
(such random variables include for example the normalized matrix
entries of the $\mathbf{A}_k$'s). A consequence is the asymptotic
independence of the projection of the matrices $\mathbf{A}_k$
onto the subspace of null trace matrices from their projections
onto the orthogonal of this subspace. These results are used
to study the asymptotic behavior of the outliers of a spiked
elliptic random matrix. More precisely, we show that the fluctuations
of these outliers around their limits can have various rates
of convergence, depending on the Jordan Canonical Form of the
additive perturbation. Also, some correlations can arise between
outliers at a macroscopic distance from each other. These phenomena
have already been observed
with random matrices
from the Single Ring Theorem.
Keywords:random matrix, Gaussian fluctuation, spiked model, elliptic random matrix, Weingarten calculus, Haar measure Categories:60B20, 15B52, 60F05, 46L54 

2. CJM 2012 (vol 65 pp. 1020)
 Goulden, I. P.; GuayPaquet, Mathieu; Novak, Jonathan

Monotone Hurwitz Numbers in Genus Zero
Hurwitz numbers count branched covers of the Riemann sphere with specified ramification data, or equivalently, transitive permutation factorizations in the symmetric group with specified cycle types. Monotone Hurwitz numbers count a restricted subset of these branched covers related to the expansion of complete symmetric functions in the JucysMurphy elements, and have arisen in recent work on the the asymptotic expansion of the HarishChandraItzyksonZuber integral. In this paper we begin a detailed study of monotone Hurwitz numbers. We prove two results that are reminiscent of those for classical Hurwitz numbers. The first is the monotone joincut equation, a partial differential equation with initial conditions that characterizes the generating function for monotone Hurwitz numbers in arbitrary genus. The second is our main result, in which we give an explicit formula for monotone Hurwitz numbers in genus zero.
Keywords:Hurwitz numbers, matrix models, enumerative geometry Categories:05A15, 14E20, 15B52 
