1. CJM 2016 (vol 69 pp. 143)
 Levinson, Jake

Onedimensional Schubert Problems with Respect to Osculating Flags
We consider Schubert problems with respect to flags osculating
the rational normal curve. These problems are of special interest
when the osculation points are all real  in this case, for
zerodimensional Schubert problems, the solutions are "as real
as possible". Recent work by Speyer has extended the theory
to the moduli space
$
\overline{\mathcal{M}_{0,r}}
$,
allowing the points to collide.
These give rise to smooth covers of
$
\overline{\mathcal{M}_{0,r}}
(\mathbb{R})
$, with structure
and monodromy described by Young tableaux and jeu de taquin.
In this paper, we give analogous results on onedimensional Schubert
problems over
$
\overline{\mathcal{M}_{0,r}}
$.
Their (real) geometry turns out to
be described by orbits of SchÃ¼tzenberger promotion and a
related operation involving tableau evacuation. Over
$\mathcal{M}_{0,r}$,
our results show that the real points of the solution curves
are smooth.
We also find a new identity involving "firstorder" Ktheoretic
LittlewoodRichardson coefficients, for which there does not
appear to be a known combinatorial proof.
Keywords:Schubert calculus, stable curves, ShapiroShapiro Conjecture, jeu de taquin, growth diagram, promotion Categories:14N15, 05E99 

2. CJM 2012 (vol 65 pp. 634)
 Mezzetti, Emilia; MiróRoig, Rosa M.; Ottaviani, Giorgio

Laplace Equations and the Weak Lefschetz Property
We prove that $r$ independent homogeneous polynomials of the same degree $d$
become dependent when restricted to any hyperplane if and only if their inverse system parameterizes a variety
whose $(d1)$osculating spaces have dimension smaller than expected. This gives an equivalence
between an algebraic notion (called Weak Lefschetz Property)
and a differential geometric notion, concerning varieties which satisfy certain Laplace equations. In the toric case,
some relevant examples are classified and as byproduct we provide counterexamples to Ilardi's conjecture.
Keywords:osculating space, weak Lefschetz property, Laplace equations, toric threefold Categories:13E10, 14M25, 14N05, 14N15, 53A20 

3. CJM 2008 (vol 60 pp. 961)
 Abrescia, Silvia

About the Defectivity of Certain SegreVeronese Varieties
We study the regularity of the higher secant varieties of $\PP^1\times
\PP^n$, embedded with divisors of type $(d,2)$ and $(d,3)$. We
produce, for the highest defective cases, a ``determinantal'' equation
of the secant variety. As a corollary, we prove that the Veronese
triple embedding of $\PP^n$ is not Grassmann defective.
Keywords:Waring problem, SegreVeronese embedding, secant variety, Grassmann defectivity Categories:14N15, 14N05, 14M12 

4. CJM 2007 (vol 59 pp. 488)
 Bernardi, A.; Catalisano, M. V.; Gimigliano, A.; Idà, M.

Osculating Varieties of Veronese Varieties and Their Higher Secant Varieties
We consider the $k$osculating varieties
$O_{k,n.d}$ to the (Veronese) $d$uple embeddings of $\PP^n$. We
study the dimension of their higher secant varieties via inverse
systems (apolarity). By associating certain 0dimensional schemes
$Y\subset \PP^n$ to $O^s_{k,n,d}$ and by studying their Hilbert
functions, we are able, in several cases, to determine whether those
secant varieties are defective or not.
Categories:14N15, 15A69 

5. CJM 2006 (vol 58 pp. 476)
 Chipalkatti, Jaydeep

Apolar Schemes of Algebraic Forms
This is a note on the classical Waring's problem for algebraic forms.
Fix integers $(n,d,r,s)$, and let $\Lambda$ be a general $r$dimensional
subspace of degree $d$ homogeneous polynomials in $n+1$ variables. Let
$\mathcal{A}$ denote the variety of $s$sided polar polyhedra of $\Lambda$.
We carry out a casebycase study of the structure of $\mathcal{A}$ for several
specific values of $(n,d,r,s)$. In the first batch of examples, $\mathcal{A}$ is
shown to be a rational variety. In the second batch, $\mathcal{A}$ is a
finite set of which we calculate the cardinality.}
Keywords:Waring's problem, apolarity, polar polyhedron Categories:14N05, 14N15 
