Expand all Collapse all | Results 26 - 50 of 159 |
26. CJM 2012 (vol 65 pp. 823)
Symbolic Powers Versus Regular Powers of Ideals of General Points in $\mathbb{P}^1 \times \mathbb{P}^1$ |
Symbolic Powers Versus Regular Powers of Ideals of General Points in $\mathbb{P}^1 \times \mathbb{P}^1$ Recent work of Ein-Lazarsfeld-Smith and Hochster-Huneke
raised the problem of which symbolic powers of an ideal
are contained in a given ordinary power of the ideal.
Bocci-Harbourne developed methods to address this problem,
which involve asymptotic numerical characters of
symbolic powers of the ideals. Most of the work
done up to now has been done for ideals defining 0-dimensional
subschemes of projective space.
Here we focus on certain subschemes given by
a union of lines in $\mathbb{P}^3$ which can also be viewed
as points in $\mathbb{P}^1 \times \mathbb{P}^1$.
We also obtain results on the
closely related problem, studied by Hochster and by Li-Swanson, of
determining situations for which
each symbolic power of an ideal is an ordinary power.
Keywords:symbolic powers, multigraded, points Categories:13F20, 13A15, 14C20 |
27. CJM 2012 (vol 65 pp. 1020)
Monotone Hurwitz Numbers in Genus Zero Hurwitz numbers count branched covers of the Riemann sphere with specified ramification data, or equivalently, transitive permutation factorizations in the symmetric group with specified cycle types. Monotone Hurwitz numbers count a restricted subset of these branched covers related to the expansion of complete symmetric functions in the Jucys-Murphy elements, and have arisen in recent work on the the asymptotic expansion of the Harish-Chandra-Itzykson-Zuber integral. In this paper we begin a detailed study of monotone Hurwitz numbers. We prove two results that are reminiscent of those for classical Hurwitz numbers. The first is the monotone join-cut equation, a partial differential equation with initial conditions that characterizes the generating function for monotone Hurwitz numbers in arbitrary genus. The second is our main result, in which we give an explicit formula for monotone Hurwitz numbers in genus zero.
Keywords:Hurwitz numbers, matrix models, enumerative geometry Categories:05A15, 14E20, 15B52 |
28. CJM 2012 (vol 65 pp. 905)
Explicit Models for Threefolds Fibred by K3 Surfaces of Degree Two We consider threefolds that admit a fibration by K3 surfaces over a nonsingular curve, equipped with a divisorial sheaf that defines a polarisation of degree two on the general fibre. Under certain assumptions on the threefold we show that its relative log canonical model exists and can be explicitly reconstructed from a small set of data determined by the original fibration. Finally we prove a converse to the above statement: under certain assumptions, any such set of data determines a threefold that arises as the relative log canonical model of a threefold admitting a fibration by K3 surfaces of degree two.
Keywords:threefold, fibration, K3 surface Categories:14J30, 14D06, 14E30, 14J28 |
29. CJM 2012 (vol 65 pp. 634)
Laplace Equations and the Weak Lefschetz Property We prove that $r$ independent homogeneous polynomials of the same degree $d$
become dependent when restricted to any hyperplane if and only if their inverse system parameterizes a variety
whose $(d-1)$-osculating spaces have dimension smaller than expected. This gives an equivalence
between an algebraic notion (called Weak Lefschetz Property)
and a differential geometric notion, concerning varieties which satisfy certain Laplace equations. In the toric case,
some relevant examples are classified and as byproduct we provide counterexamples to Ilardi's conjecture.
Keywords:osculating space, weak Lefschetz property, Laplace equations, toric threefold Categories:13E10, 14M25, 14N05, 14N15, 53A20 |
30. CJM 2012 (vol 65 pp. 575)
The Geometry and Fundamental Group of Permutation Products and Fat Diagonals Permutation products and their various ``fat diagonal'' subspaces are
studied from the topological and geometric point of view. We describe
in detail the stabilizer and orbit stratifications related to the
permutation action, producing a sharp upper bound for its depth and
then paying particular attention to the geometry of the diagonal
stratum. We write down an expression for the fundamental group of any
permutation product of a connected space $X$ having the homotopy type
of a CW complex in terms of $\pi_1(X)$ and $H_1(X;\mathbb{Z})$. We then
prove that the fundamental group of the configuration space of
$n$-points on $X$, of which multiplicities do not exceed $n/2$,
coincides with $H_1(X;\mathbb{Z})$. Further results consist in giving
conditions for when fat diagonal subspaces of manifolds can be
manifolds again. Various examples and homological calculations are
included.
Keywords:symmetric products, fundamental group, orbit stratification Categories:14F35, 57F80 |
31. CJM 2012 (vol 65 pp. 961)
A Hilbert Scheme in Computer Vision Multiview geometry is the study of
two-dimensional images of three-dimensional scenes, a foundational subject in computer vision.
We determine a universal GrÃ¶bner basis for the multiview ideal of $n$ generic cameras.
As the cameras move, the multiview varieties vary in a family of dimension $11n-15$.
This family is the distinguished component of a multigraded Hilbert scheme
with a unique Borel-fixed point.
We present a combinatorial study
of ideals lying on that Hilbert scheme.
Keywords:multigraded Hilbert Scheme, computer vision, monomial ideal, Groebner basis, generic initial ideal Categories:14N, 14Q, 68 |
32. CJM 2012 (vol 64 pp. 1222)
Normality of Maximal Orbit Closures for Euclidean Quivers Let $\Delta$ be an Euclidean quiver. We prove that the closures of
the maximal orbits in the varieties of representations of $\Delta$
are normal and Cohen--Macaulay (even complete intersections).
Moreover, we give a generalization of this result for the tame
concealed-canonical algebras.
Keywords:normal variety, complete intersection, Euclidean quiver, concealed-canonical algebra Categories:16G20, 14L30 |
33. CJM 2012 (vol 65 pp. 721)
Tameness of Complex Dimension in a Real Analytic Set Given a real analytic set $X$ in a complex manifold and a positive
integer $d$, denote by $\mathcal A^d$ the set of points $p$ in $X$ at which
there exists a germ of a complex analytic set of dimension $d$ contained in $X$.
It is proved that $\mathcal A^d$ is a closed semianalytic subset of $X$.
Keywords:complex dimension, finite type, semianalytic set, tameness Categories:32B10, 32B20, 32C07, 32C25, 32V15, 32V40, 14P15 |
34. CJM 2012 (vol 65 pp. 544)
Iterated Integrals and Higher Order Invariants We show that higher order invariants of smooth functions can be
written as linear combinations of full invariants times iterated
integrals.
The non-uniqueness of such a presentation is captured in the kernel of
the ensuing map from the tensor product. This kernel is computed
explicitly.
As a consequence, it turns out that higher order invariants are a free
module of the algebra of full invariants.
Keywords:higher order forms, iterated integrals Categories:14F35, 11F12, 55D35, 58A10 |
35. CJM 2012 (vol 65 pp. 195)
Surfaces with $p_g=q=2$, $K^2=6$, and Albanese Map of Degree $2$ We classify minimal surfaces of general type with $p_g=q=2$ and
$K^2=6$ whose Albanese map is a generically finite double cover.
We show that the corresponding moduli space is the disjoint union
of three generically smooth irreducible components
$\mathcal{M}_{Ia}$, $\mathcal{M}_{Ib}$, $\mathcal{M}_{II}$ of
dimension $4$, $4$, $3$, respectively.
Keywords:surface of general type, abelian surface, Albanese map Categories:14J29, 14J10 |
36. CJM 2012 (vol 65 pp. 120)
Universal Families of Rational Tropical Curves We introduce the notion of families of $n$-marked
smooth rational tropical curves over smooth tropical varieties and
establish a one-to-one correspondence between (equivalence classes of)
these families and morphisms
from smooth tropical varieties into the moduli space of $n$-marked
abstract rational tropical curves $\mathcal{M}_{n}$.
Keywords:tropical geometry, universal family, rational curves, moduli space Categories:14T05, 14D22 |
37. CJM 2011 (vol 64 pp. 1090)
Classic and Mirabolic Robinson-Schensted-Knuth Correspondence for Partial Flags In this paper we first generalize to the case of
partial flags a result proved both by Spaltenstein and by Steinberg
that relates the relative position of two complete flags and the
irreducible components of the flag variety in which they lie, using
the Robinson-Schensted-Knuth correspondence. Then we use this result
to generalize the mirabolic Robinson-Schensted-Knuth correspondence
defined by Travkin, to the case of two partial flags and a line.
Keywords:partial flag varieties, RSK correspondence Categories:14M15, 05A05 |
38. CJM 2011 (vol 64 pp. 1248)
Darmon's Points and Quaternionic Shimura Varieties In this paper, we generalize a conjecture due to Darmon and Logan in
an adelic setting. We study the relation between our construction and
Kudla's works on cycles on orthogonal Shimura varieties. This relation
allows us to conjecture a Gross-Kohnen-Zagier theorem for Darmon's
points.
Keywords:elliptic curves, Stark-Heegner points, quaternionic Shimura varieties Categories:11G05, 14G35, 11F67, 11G40 |
39. CJM 2011 (vol 64 pp. 3)
Automorphismes naturels de l'espace de Douady de points sur une surface On Ã©tablit quelques rÃ©sultats gÃ©nÃ©raux relatifs Ã la taille
du groupe d'automorphismes de l'espace de Douady de points sur une
surface, puis on Ã©tudie quelques propriÃ©tÃ©s des automorphismes
provenant d'un automorphisme de la surface, en particulier leur action
sur la cohomologie et la classification de leurs points fixes.
Keywords:SchÃ©ma de Hilbert, automorphismes, points fixes Category:14C05 |
40. CJM 2011 (vol 64 pp. 1122)
$p$-adic $L$-functions and the Rationality of Darmon Cycles Darmon cycles are a higher weight analogue of Stark--Heegner points. They
yield local cohomology classes in the Deligne representation associated with a
cuspidal form on $\Gamma _{0}( N) $ of even weight $k_{0}\geq 2$.
They are conjectured to be the restriction of global cohomology classes in
the Bloch--Kato Selmer group defined over narrow ring class fields attached
to a real quadratic field. We show that suitable linear combinations of them
obtained by genus characters satisfy these conjectures. We also prove $p$-adic Gross--Zagier type formulas, relating the derivatives of $p$-adic $L$-functions of the weight variable attached to imaginary (resp. real)
quadratic fields to Heegner cycles (resp. Darmon cycles). Finally we express
the second derivative of the Mazur--Kitagawa $p$-adic $L$-function of the
weight variable in terms of a global cycle defined over a quadratic
extension of $\mathbb{Q}$.
Categories:11F67, 14G05 |
41. CJM 2011 (vol 64 pp. 845)
Monodromy Filtrations and the Topology of Tropical Varieties We study the topology of tropical varieties that arise from a certain
natural class of varieties. We use the theory of tropical
degenerations to construct a natural, ``multiplicity-free''
parameterization of $\operatorname{Trop}(X)$ by a topological space
$\Gamma_X$ and give a geometric interpretation of the cohomology of
$\Gamma_X$ in terms of the action of a monodromy operator on the
cohomology of $X$. This gives bounds on the Betti numbers of
$\Gamma_X$ in terms of the Betti numbers of $X$ which constrain the
topology of $\operatorname{Trop}(X)$. We also obtain a description of
the top power of the monodromy operator acting on middle cohomology of
$X$ in terms of the volume pairing on $\Gamma_X$.
Categories:14T05, 14D06 |
42. CJM 2011 (vol 64 pp. 805)
Quantum Random Walks and Minors of Hermitian Brownian Motion Considering quantum random walks, we construct discrete-time
approximations of the eigenvalues processes of minors of Hermitian
Brownian motion. It has been recently proved by Adler, Nordenstam, and
van Moerbeke that the process of eigenvalues of
two consecutive minors of a Hermitian Brownian motion is a Markov
process; whereas, if one considers more than two consecutive minors,
the Markov property fails. We show that there are analog results in
the noncommutative counterpart and establish the Markov property of
eigenvalues of some particular submatrices of Hermitian Brownian
motion.
Keywords:quantum random walk, quantum Markov chain, generalized casimir operators, Hermitian Brownian motion, diffusions, random matrices, minor process Categories:46L53, 60B20, 14L24 |
43. CJM 2011 (vol 64 pp. 123)
Gosset Polytopes in Picard Groups of del Pezzo Surfaces In this article, we study the correspondence between the geometry of
del Pezzo surfaces $S_{r}$ and the geometry of the $r$-dimensional Gosset
polytopes $(r-4)_{21}$. We construct Gosset polytopes $(r-4)_{21}$ in
$\operatorname{Pic} S_{r}\otimes\mathbb{Q}$ whose vertices are lines, and we identify
divisor classes in $\operatorname{Pic} S_{r}$ corresponding to $(a-1)$-simplexes ($a\leq
r$), $(r-1)$-simplexes and $(r-1)$-crosspolytopes of the polytope $(r-4)_{21}$.
Then we explain how these classes correspond to skew $a$-lines($a\leq r$),
exceptional systems, and rulings, respectively.
As an application, we work on the monoidal transform for lines to study the
local geometry of the polytope $(r-4)_{21}$. And we show that the Gieser transformation
and the Bertini transformation induce a symmetry of polytopes $3_{21}$ and
$4_{21}$, respectively.
Categories:51M20, 14J26, 22E99 |
44. CJM 2011 (vol 63 pp. 1345)
Pointed Torsors This paper gives a characterization of homotopy fibres of inverse
image maps on groupoids of torsors that are induced by geometric
morphisms, in terms of both pointed torsors and pointed cocycles,
suitably defined. Cocycle techniques are used to give a complete
description of such fibres, when the underlying geometric morphism is
the canonical stalk on the classifying topos of a profinite group
$G$. If the torsors in question are defined with respect to a constant
group $H$, then the path components of the fibre can be identified with
the set of continuous maps from the profinite group $G$ to the group
$H$. More generally, when $H$ is not constant, this set of path components
is the set of continuous maps from a pro-object in sheaves of
groupoids to $H$, which pro-object can be viewed as a ``Grothendieck
fundamental groupoid".
Keywords:pointed torsors, pointed cocycles, homotopy fibres Categories:18G50, 14F35, 55B30 |
45. CJM 2011 (vol 64 pp. 409)
Lifting Quasianalytic Mappings over Invariants Let $\rho \colon G \to \operatorname{GL}(V)$ be a rational finite dimensional complex representation of a reductive linear
algebraic group $G$, and let $\sigma_1,\dots,\sigma_n$ be a system of generators of the algebra of
invariant polynomials $\mathbb C[V]^G$.
We study the problem of lifting mappings $f\colon \mathbb R^q \supseteq U \to \sigma(V) \subseteq \mathbb C^n$
over the mapping of invariants
$\sigma=(\sigma_1,\dots,\sigma_n) \colon V \to \sigma(V)$. Note that $\sigma(V)$ can be identified with the categorical quotient $V /\!\!/ G$
and its points correspond bijectively to the closed orbits in $V$. We prove that if $f$ belongs to a quasianalytic subclass
$\mathcal C \subseteq C^\infty$ satisfying some mild closedness properties that guarantee resolution of singularities in
$\mathcal C$,
e.g., the real analytic class, then $f$ admits a lift of the
same class $\mathcal C$ after desingularization by local blow-ups and local power substitutions.
As a consequence we show that $f$ itself allows for a lift
that belongs to $\operatorname{SBV}_{\operatorname{loc}}$, i.e., special functions of bounded variation.
If $\rho$ is a real representation of a compact Lie group, we obtain stronger versions.
Keywords:lifting over invariants, reductive group representation, quasianalytic mappings, desingularization, bounded variation Categories:14L24, 14L30, 20G20, 22E45 |
46. CJM 2011 (vol 64 pp. 81)
Pseudoprime Reductions of Elliptic Curves
Let $E$ be an elliptic curve over $\mathbb Q$ without complex multiplication,
and for each prime
$p$ of good reduction, let $n_E(p) = | E(\mathbb F_p) |$. For any integer
$b$, we consider elliptic pseudoprimes to the base
$b$. More precisely, let $Q_{E,b}(x)$ be the number of primes $p \leq
x$ such that $b^{n_E(p)} \equiv b\,({\rm mod}\,n_E(p))$, and let $\pi_{E,
b}^{\operatorname{pseu}}(x)$ be the number of compositive $n_E(p)$ such
that $b^{n_E(p)} \equiv b\,({\rm mod}\,n_E(p))$ (also called
elliptic curve pseudoprimes). Motivated by cryptography applications,
we address the problem of finding upper bounds for
$Q_{E,b}(x)$ and $\pi_{E, b}^{\operatorname{pseu}}(x)$,
generalising some of the literature for the classical pseudoprimes
to this new setting.
Keywords:Rosser-Iwaniec sieve, group order of elliptic curves over finite fields, pseudoprimes Categories:11N36, 14H52 |
47. CJM 2011 (vol 63 pp. 1058)
$S_3$-covers of Schemes We analyze flat $S_3$-covers of schemes, attempting to create
structures parallel to those found in the abelian and triple cover
theories. We use an initial local analysis as a guide in finding a
global description.
Keywords:nonabelian groups, permutation group, group covers, schemes Category:14L30 |
48. CJM 2011 (vol 63 pp. 992)
The Arithmetic of Genus Two Curves with (4,4)-Split Jacobians
In this paper we study genus $2$ curves whose Jacobians admit a
polarized $(4,4)$-isogeny to a product of elliptic curves. We consider
base fields of characteristic different from $2$ and $3$, which we do
not assume to be algebraically closed.
We obtain a full classification of all principally polarized abelian
surfaces that can arise from gluing two elliptic curves along their
$4$-torsion, and we derive the relation their absolute invariants
satisfy.
As an intermediate step, we give a general description of Richelot
isogenies between Jacobians of genus $2$ curves, where previously only
Richelot isogenies with kernels that are pointwise defined over the
base field were considered.
Our main tool is a Galois theoretic characterization of genus $2$
curves admitting multiple Richelot isogenies.
Keywords:Genus 2 curves, isogenies, split Jacobians, elliptic curves Categories:11G30, 14H40 |
49. CJM 2011 (vol 63 pp. 1388)
Nonabelian $H^1$ and the Ãtale Van Kampen Theorem
Generalized Ã©tale homotopy pro-groups $\pi_1^{\operatorname{Ã©t}}(Ä{C}, x)$
associated with pointed, connected, small Grothendieck
sites $(\mathcal{C}, x)$ are defined, and their relationship to Galois
theory and the theory of pointed torsors for discrete
groups is explained.
Applications include new rigorous proofs of some folklore results around $\pi_1^{\operatorname{Ã©t}}(Ã©t(X), x)$, a description of Grothendieck's short exact sequence for Galois descent in terms of pointed torsor trivializations, and a new Ã©tale van Kampen theorem that gives a simple statement about a pushout square of pro-groups that works for covering families that do not necessarily consist exclusively of monomorphisms. A corresponding van Kampen result for Grothendieck's profinite groups $\pi_1^{\mathrm{Gal}}$ immediately follows. Keywords:Ã©tale homotopy theory, simplicial sheaves Categories:18G30, 14F35 |
50. CJM 2011 (vol 63 pp. 755)
On the Geometry of the Moduli Space of Real Binary Octics The moduli space of smooth real binary octics has five connected
components. They parametrize the real binary octics whose defining
equations have $0,\dots,4$ complex-conjugate pairs of roots
respectively. We show that each of these five components has a real
hyperbolic structure in the sense that each is isomorphic as a
real-analytic manifold to the quotient of an open dense subset of
$5$-dimensional real hyperbolic space $\mathbb{RH}^5$ by the action of an
arithmetic subgroup of $\operatorname{Isom}(\mathbb{RH}^5)$. These subgroups are
commensurable to discrete hyperbolic reflection groups, and the
Vinberg diagrams of the latter are computed.
Keywords:real binary octics, moduli space, complex hyperbolic geometry, Vinberg algorithm Categories:32G13, 32G20, 14D05, 14D20 |