CMS/SMC
Canadian Mathematical Society
www.cms.math.ca
Canadian Mathematical Society
  location:  Publicationsjournals
Publications        
Search results

Search: MSC category 13P10 ( Grobner bases; other bases for ideals and modules (e.g., Janet and border bases) )

  Expand all        Collapse all Results 1 - 3 of 3

1. CJM 2017 (vol 69 pp. 992)

Bremner, Murray; Dotsenko, Vladimir
Classification of Regular Parametrized One-relation Operads
Jean-Louis Loday introduced a class of symmetric operads generated by one bilinear operation subject to one relation making each left-normed product of three elements equal to a linear combination of right-normed products: \[ (a_1a_2)a_3=\sum_{\sigma\in S_3}x_\sigma\, a_{\sigma(1)}(a_{\sigma(2)}a_{\sigma(3)})\ ; \] such an operad is called a parametrized one-relation operad. For a particular choice of parameters $\{x_\sigma\}$, this operad is said to be regular if each of its components is the regular representation of the symmetric group; equivalently, the corresponding free algebra on a vector space $V$ is, as a graded vector space, isomorphic to the tensor algebra of $V$. We classify, over an algebraically closed field of characteristic zero, all regular parametrized one-relation operads. In fact, we prove that each such operad is isomorphic to one of the following five operads: the left-nilpotent operad defined by the relation $((a_1a_2)a_3)=0$, the associative operad, the Leibniz operad, the dual Leibniz (Zinbiel) operad, and the Poisson operad. Our computational methods combine linear algebra over polynomial rings, representation theory of the symmetric group, and Gröbner bases for determinantal ideals and their radicals.

Keywords:parametrized one-relation algebra, algebraic operad, Koszul duality, representation theory of the symmetric group, determinantal ideal, Gröbner basis
Categories:18D50, 13B25, 13P10, 13P15, 15A54, 17-04, , , , , 17A30, 17A50, 20C30, 68W30

2. CJM 2009 (vol 61 pp. 930)

Sidman, Jessica; Sullivant, Seth
Prolongations and Computational Algebra
We explore the geometric notion of prolongations in the setting of computational algebra, extending results of Landsberg and Manivel which relate prolongations to equations for secant varieties. We also develop methods for computing prolongations that are combinatorial in nature. As an application, we use prolongations to derive a new family of secant equations for the binary symmetric model in phylogenetics.

Categories:13P10, 14M99

3. CJM 2000 (vol 52 pp. 123)

Harbourne, Brian
An Algorithm for Fat Points on $\mathbf{P}^2
Let $F$ be a divisor on the blow-up $X$ of $\pr^2$ at $r$ general points $p_1, \dots, p_r$ and let $L$ be the total transform of a line on $\pr^2$. An approach is presented for reducing the computation of the dimension of the cokernel of the natural map $\mu_F \colon \Gamma \bigl( \CO_X(F) \bigr) \otimes \Gamma \bigl( \CO_X(L) \bigr) \to \Gamma \bigl( \CO_X(F) \otimes \CO_X(L) \bigr)$ to the case that $F$ is ample. As an application, a formula for the dimension of the cokernel of $\mu_F$ is obtained when $r = 7$, completely solving the problem of determining the modules in minimal free resolutions of fat point subschemes\break $m_1 p_1 + \cdots + m_7 p_7 \subset \pr^2$. All results hold for an arbitrary algebraically closed ground field~$k$.

Keywords:Generators, syzygies, resolution, fat points, maximal rank, plane, Weyl group
Categories:13P10, 14C99, 13D02, 13H15

© Canadian Mathematical Society, 2017 : https://cms.math.ca/