CMS/SMC
Canadian Mathematical Society
www.cms.math.ca
Canadian Mathematical Society
  location:  Publicationsjournals
Publications        
Search results

Search: MSC category 11R ( Algebraic number theory: global fields {For complex multiplication, see 11G15} )

  Expand all        Collapse all Results 1 - 25 of 51

1. CJM Online first

Hajir, Farshid; Maire, Christian
On the invariant factors of class groups in towers of number fields
For a finite abelian $p$-group $A$ of rank $d=\dim A/pA$, let $\mathbb{M}_A := \log_p |A|^{1/d}$ be its \emph{(logarithmic) mean exponent}. We study the behavior of the mean exponent of $p$-class groups in pro-$p$ towers $\mathrm{L}/K$ of number fields. Via a combination of results from analytic and algebraic number theory, we construct infinite tamely ramified pro-$p$ towers in which the mean exponent of $p$-class groups remains bounded. Several explicit examples are given with $p=2$. Turning to group theory, we introduce an invariant $\underline{\mathbb{M}}(G)$ attached to a finitely generated pro-$p$ group $G$; when $G=\operatorname{Gal}(\mathrm{L}/\mathrm{K})$, where $\mathrm{L}$ is the Hilbert $p$-class field tower of a number field $K$, $\underline{\mathbb{M}}(G)$ measures the asymptotic behavior of the mean exponent of $p$-class groups inside $\mathrm{L}/\mathrm{K}$. We compare and contrast the behavior of this invariant in analytic versus non-analytic groups. We exploit the interplay of group-theoretical and number-theoretical perspectives on this invariant and explore some open questions that arise as a result, which may be of independent interest in group theory.

Keywords:class field tower, ideal class group, pro-p group, p-adic analytic group, Brauer-Siegel Theorem
Categories:11R29, 11R37

2. CJM Online first

Hare, Kathryn; Hare, Kevin; Ng, Michael Ka Shing
Local dimensions of measures of finite type II -- Measures without full support and with non-regular probabilities
Consider a finite sequence of linear contractions $S_{j}(x)=\varrho x+d_{j}$ and probabilities $p_{j}\gt 0$ with $\sum p_{j}=1$. We are interested in the self-similar measure $\mu =\sum p_{j}\mu \circ S_{j}^{-1}$, of finite type. In this paper we study the multi-fractal analysis of such measures, extending the theory to measures arising from non-regular probabilities and whose support is not necessarily an interval. Under some mild technical assumptions, we prove that there exists a subset of supp$\mu $ of full $\mu $ and Hausdorff measure, called the truly essential class, for which the set of (upper or lower) local dimensions is a closed interval. Within the truly essential class we show that there exists a point with local dimension exactly equal to the dimension of the support. We give an example where the set of local dimensions is a two element set, with all the elements of the truly essential class giving the same local dimension. We give general criteria for these measures to be absolutely continuous with respect to the associated Hausdorff measure of their support and we show that the dimension of the support can be computed using only information about the essential class. To conclude, we present a detailed study of three examples. First, we show that the set of local dimensions of the biased Bernoulli convolution with contraction ratio the inverse of a simple Pisot number always admits an isolated point. We give a precise description of the essential class of a generalized Cantor set of finite type, and show that the $kth$ convolution of the associated Cantor measure has local dimension at $x\in (0,1)$ tending to 1 as $k$ tends to infinity. Lastly, we show that within a maximal loop class that is not truly essential, the set of upper local dimensions need not be an interval. This is in contrast to the case for finite type measures with regular probabilities and full interval support.

Keywords:multi-fractal analysis, local dimension, IFS, finite type
Categories:28A80, 28A78, 11R06

3. CJM Online first

Martin, Kimball
Congruences for modular forms mod 2 and quaternionic $S$-ideal classes
We prove many simultaneous congruences mod 2 for elliptic and Hilbert modular forms among forms with different Atkin--Lehner eigenvalues. The proofs involve the notion of quaternionic $S$-ideal classes and the distribution of Atkin--Lehner signs among newforms.

Keywords:modular forms, congruences, quaternion algebras
Categories:11F33, 11R52

4. CJM 2016 (vol 69 pp. 579)

Lee, Jungyun; Lee, Yoonjin
Regulators of an Infinite Family of the Simplest Quartic Function Fields
We explicitly find regulators of an infinite family $\{L_m\}$ of the simplest quartic function fields with a parameter $m$ in a polynomial ring $\mathbb{F}_q [t]$, where $\mathbb{F}_q$ is the finite field of order $q$ with odd characteristic. In fact, this infinite family of the simplest quartic function fields are subfields of maximal real subfields of cyclotomic function fields, where they have the same conductors. We obtain a lower bound on the class numbers of the family $\{L_m\}$ and some result on the divisibility of the divisor class numbers of cyclotomic function fields which contain $\{L_m\}$ as their subfields. Furthermore, we find an explicit criterion for the characterization of splitting types of all the primes of the rational function field $\mathbb{F}_q (t)$ in $\{L_m\}$.

Keywords:regulator, function field, quartic extension, class number
Categories:11R29, 11R58

5. CJM 2016 (vol 69 pp. 826)

Lei, Antonio; Loeffler, David; Zerbes, Sarah Livia
On the Asymptotic Growth of Bloch-Kato-Shafarevich-Tate Groups of Modular Forms over Cyclotomic Extensions
We study the asymptotic behaviour of the Bloch--Kato--Shafarevich--Tate group of a modular form $f$ over the cyclotomic $\mathbb{Z}_p$-extension of $\mathbb{Q}$ under the assumption that $f$ is non-ordinary at $p$. In particular, we give upper bounds of these groups in terms of Iwasawa invariants of Selmer groups defined using $p$-adic Hodge Theory. These bounds have the same form as the formulae of Kobayashi, Kurihara and Sprung for supersingular elliptic curves.

Keywords:cyclotomic extension, Shafarevich-Tate group, Bloch-Kato Selmer group, modular form, non-ordinary prime, p-adic Hodge theory
Categories:11R18, 11F11, 11R23, 11F85

6. CJM 2016 (vol 68 pp. 571)

Gras, Georges
Les $\theta$-régulateurs locaux d'un nombre algébrique : Conjectures $p$-adiques
Let $K/\mathbb{Q}$ be Galois and let $\eta\in K^\times$ be such that $\operatorname{Reg}_\infty (\eta) \ne 0$. We define the local $\theta$-regulators $\Delta_p^\theta(\eta) \in \mathbb{F}_p$ for the $\mathbb{Q}_p\,$-irreducible characters $\theta$ of $G=\operatorname{Gal}(K/\mathbb{Q})$. A linear representation ${\mathcal L}^\theta\simeq \delta \, V_\theta$ is associated with $\Delta_p^\theta (\eta)$ whose nullity is equivalent to $\delta \geq 1$. Each $\Delta_p^\theta (\eta)$ yields $\operatorname{Reg}_p^\theta (\eta)$ modulo $p$ in the factorization $\prod_{\theta}(\operatorname{Reg}_p^\theta (\eta))^{\varphi(1)}$ of $\operatorname{Reg}_p^G (\eta) := \frac{ \operatorname{Reg}_p(\eta)}{p^{[K : \mathbb{Q}\,]} }$ (normalized $p$-adic regulator). From $\operatorname{Prob}\big (\Delta_p^\theta(\eta) = 0 \ \& \ {\mathcal L}^\theta \simeq \delta \, V_\theta\big ) \leq p^{- f \delta^2}$ ($f \geq 1$ is a residue degree) and the Borel-Cantelli heuristic, we conjecture that, for $p$ large enough, $\operatorname{Reg}_p^G (\eta)$ is a $p$-adic unit or that $p^{\varphi(1)} \parallel \operatorname{Reg}_p^G (\eta)$ (a single $\theta$ with $f=\delta=1$); this obstruction may be lifted assuming the existence of a binomial probability law confirmed through numerical studies (groups $C_3$, $C_5$, $D_6$). This conjecture would imply that, for all $p$ large enough, Fermat quotients, normalized $p$-adic regulators are $p$-adic units and that number fields are $p$-rational. We recall some deep cohomological results that may strengthen such conjectures.

Keywords:$p$-adic regulators, Leopoldt-Jaulent conjecture, Frobenius group determinants, characters, Fermat quotient, Abelian $p$-ramification, probabilistic number theory
Categories:11F85, 11R04, 20C15, 11C20, 11R37, 11R27, 11Y40

7. CJM 2015 (vol 67 pp. 1326)

Cojocaru, Alina Carmen; Shulman, Andrew Michael
The Distribution of the First Elementary Divisor of the Reductions of a Generic Drinfeld Module of Arbitrary Rank
Let $\psi$ be a generic Drinfeld module of rank $r \geq 2$. We study the first elementary divisor $d_{1, \wp}(\psi)$ of the reduction of $\psi$ modulo a prime $\wp$, as $\wp$ varies. In particular, we prove the existence of the density of the primes $\wp$ for which $d_{1, \wp} (\psi)$ is fixed. For $r = 2$, we also study the second elementary divisor (the exponent) of the reduction of $\psi$ modulo $\wp$ and prove that, on average, it has a large norm. Our work is motivated by the study of J.-P. Serre of an elliptic curve analogue of Artin's Primitive Root Conjecture, and, moreover, by refinements to Serre's study developed by the first author and M.R. Murty.

Keywords:Drinfeld modules, density theorems
Categories:11R45, 11G09, 11R58

8. CJM 2015 (vol 67 pp. 1046)

Dubickas, Arturas; Sha, Min; Shparlinski, Igor
Explicit Form of Cassels' $p$-adic Embedding Theorem for Number Fields
In this paper, we mainly give a general explicit form of Cassels' $p$-adic embedding theorem for number fields. We also give its refined form in the case of cyclotomic fields. As a byproduct, given an irreducible polynomial $f$ over $\mathbb{Z}$, we give a general unconditional upper bound for the smallest prime number $p$ such that $f$ has a simple root modulo $p$.

Keywords:number field, $p$-adic embedding, height, polynomial, cyclotomic field
Categories:11R04, 11S85, 11G50, 11R09, 11R18

9. CJM 2015 (vol 67 pp. 654)

Lim, Meng Fai; Murty, V. Kumar
Growth of Selmer groups of CM Abelian varieties
Let $p$ be an odd prime. We study the variation of the $p$-rank of the Selmer group of Abelian varieties with complex multiplication in certain towers of number fields.

Keywords:Selmer group, Abelian variety with complex multiplication, $\mathbb{Z}_p$-extension, $p$-Hilbert class tower
Categories:11G15, 11G10, 11R23, 11R34

10. CJM 2014 (vol 67 pp. 848)

Köck, Bernhard; Tait, Joseph
Faithfulness of Actions on Riemann-Roch Spaces
Given a faithful action of a finite group $G$ on an algebraic curve~$X$ of genus $g_X\geq 2$, we give explicit criteria for the induced action of~$G$ on the Riemann-Roch space~$H^0(X,\mathcal{O}_X(D))$ to be faithful, where $D$ is a $G$-invariant divisor on $X$ of degree at least~$2g_X-2$. This leads to a concise answer to the question when the action of~$G$ on the space~$H^0(X, \Omega_X^{\otimes m})$ of global holomorphic polydifferentials of order $m$ is faithful. If $X$ is hyperelliptic, we furthermore provide an explicit basis of~$H^0(X, \Omega_X^{\otimes m})$. Finally, we give applications in deformation theory and in coding theory and we discuss the analogous problem for the action of~$G$ on the first homology $H_1(X, \mathbb{Z}/m\mathbb{Z})$ if $X$ is a Riemann surface.

Keywords:faithful action, Riemann-Roch space, polydifferential, hyperelliptic curve, equivariant deformation theory, Goppa code, homology
Categories:14H30, 30F30, 14L30, 14D15, 11R32

11. CJM 2014 (vol 67 pp. 507)

Borwein, Peter; Choi, Stephen; Ferguson, Ron; Jankauskas, Jonas
On Littlewood Polynomials with Prescribed Number of Zeros Inside the Unit Disk
We investigate the numbers of complex zeros of Littlewood polynomials $p(z)$ (polynomials with coefficients $\{-1, 1\}$) inside or on the unit circle $|z|=1$, denoted by $N(p)$ and $U(p)$, respectively. Two types of Littlewood polynomials are considered: Littlewood polynomials with one sign change in the sequence of coefficients and Littlewood polynomials with one negative coefficient. We obtain explicit formulas for $N(p)$, $U(p)$ for polynomials $p(z)$ of these types. We show that, if $n+1$ is a prime number, then for each integer $k$, $0 \leq k \leq n-1$, there exists a Littlewood polynomial $p(z)$ of degree $n$ with $N(p)=k$ and $U(p)=0$. Furthermore, we describe some cases when the ratios $N(p)/n$ and $U(p)/n$ have limits as $n \to \infty$ and find the corresponding limit values.

Keywords:Littlewood polynomials, zeros, complex roots
Categories:11R06, 11R09, 11C08

12. CJM 2012 (vol 65 pp. 1201)

Cho, Peter J.; Kim, Henry H.
Application of the Strong Artin Conjecture to the Class Number Problem
We construct unconditionally several families of number fields with the largest possible class numbers. They are number fields of degree 4 and 5 whose Galois closures have the Galois group $A_4, S_4$ and $S_5$. We first construct families of number fields with smallest regulators, and by using the strong Artin conjecture and applying zero density result of Kowalski-Michel, we choose subfamilies of $L$-functions which are zero free close to 1. For these subfamilies, the $L$-functions have the extremal value at $s=1$, and by the class number formula, we obtain the extreme class numbers.

Keywords:class number, strong Artin conjecture
Categories:11R29, 11M41

13. CJM 2012 (vol 64 pp. 254)

Bell, Jason P.; Hare, Kevin G.
Corrigendum to ``On $\mathbb{Z}$-modules of Algebraic Integers''
We fix a mistake in the proof of Theorem 1.6 in the paper in the title.

Keywords:Pisot numbers, algebraic integers, number rings, Schmidt subspace theorem
Categories:11R04, 11R06

14. CJM 2011 (vol 64 pp. 345)

McKee, James; Smyth, Chris
Salem Numbers and Pisot Numbers via Interlacing
We present a general construction of Salem numbers via rational functions whose zeros and poles mostly lie on the unit circle and satisfy an interlacing condition. This extends and unifies earlier work. We then consider the ``obvious'' limit points of the set of Salem numbers produced by our theorems and show that these are all Pisot numbers, in support of a conjecture of Boyd. We then show that all Pisot numbers arise in this way. Combining this with a theorem of Boyd, we produce all Salem numbers via an interlacing construction.

Keywords:Salem numbers, Pisot numbers
Category:11R06

15. CJM 2011 (vol 63 pp. 1220)

Baake, Michael; Scharlau, Rudolf; Zeiner, Peter
Similar Sublattices of Planar Lattices
The similar sublattices of a planar lattice can be classified via its multiplier ring. The latter is the ring of rational integers in the generic case, and an order in an imaginary quadratic field otherwise. Several classes of examples are discussed, with special emphasis on concrete results. In particular, we derive Dirichlet series generating functions for the number of distinct similar sublattices of a given index, and relate them to zeta functions of orders in imaginary quadratic fields.

Categories:11H06, 11R11, 52C05, 82D25

16. CJM 2010 (vol 62 pp. 1011)

Buckingham, Paul; Snaith, Victor
Functoriality of the Canonical Fractional Galois Ideal
The fractional Galois ideal is a conjectural improvement on the higher Stickelberger ideals defined at negative integers, and is expected to provide non-trivial annihilators for higher $K$-groups of rings of integers of number fields. In this article, we extend the definition of the fractional Galois ideal to arbitrary (possibly infinite and non-abelian) Galois extensions of number fields under the assumption of Stark's conjectures and prove naturality properties under canonical changes of extension. We discuss applications of this to the construction of ideals in non-commutative Iwasawa algebras.

Categories:11R42, 11R23, 11R70

17. CJM 2010 (vol 62 pp. 1060)

Darmon, Henri; Tian, Ye
Heegner Points over Towers of Kummer Extensions
Let $E$ be an elliptic curve, and let $L_n$ be the Kummer extension generated by a primitive $p^n$-th root of unity and a $p^n$-th root of $a$ for a fixed $a\in \mathbb{Q}^\times-\{\pm 1\}$. A detailed case study by Coates, Fukaya, Kato and Sujatha and V. Dokchitser has led these authors to predict unbounded and strikingly regular growth for the rank of $E$ over $L_n$ in certain cases. The aim of this note is to explain how some of these predictions might be accounted for by Heegner points arising from a varying collection of Shimura curve parametrisations.

Categories:11G05, 11R23, 11F46

18. CJM 2010 (vol 62 pp. 543)

Hare, Kevin G.
More Variations on the Sierpiński Sieve
This paper answers a question of Broomhead, Montaldi and Sidorov about the existence of gaskets of a particular type related to the Sierpiński sieve. These gaskets are given by iterated function systems that do not satisfy the open set condition. We use the methods of Ngai and Wang to compute the dimension of these gaskets.

Categories:28A80, 28A78, 11R06

19. CJM 2010 (vol 62 pp. 787)

Landquist, E.; Rozenhart, P.; Scheidler, R.; Webster, J.; Wu, Q.
An Explicit Treatment of Cubic Function Fields with Applications
We give an explicit treatment of cubic function fields of characteristic at least five. This includes an efficient technique for converting such a field into standard form, formulae for the field discriminant and the genus, simple necessary and sufficient criteria for non-singularity of the defining curve, and a characterization of all triangular integral bases. Our main result is a description of the signature of any rational place in a cubic extension that involves only the defining curve and the order of the base field. All these quantities only require simple polynomial arithmetic as well as a few square-free polynomial factorizations and, in some cases, square and cube root extraction modulo an irreducible polynomial. We also illustrate why and how signature computation plays an important role in computing the class number of the function field. This in turn has applications to the study of zeros of zeta functions of function fields.

Keywords:cubic function field, discriminant, non-singularity, integral basis, genus, signature of a place, class number
Categories:14H05, 11R58, 14H45, 11G20, 11G30, 11R16, 11R29

20. CJM 2009 (vol 62 pp. 157)

Masri, Riad
Special Values of Class Group $L$-Functions for CM Fields
Let $H$ be the Hilbert class field of a CM number field $K$ with maximal totally real subfield $F$ of degree $n$ over $\mathbb{Q}$. We evaluate the second term in the Taylor expansion at $s=0$ of the Galois-equivariant $L$-function $\Theta_{S_{\infty}}(s)$ associated to the unramified abelian characters of $\operatorname{Gal}(H/K)$. This is an identity in the group ring $\mathbb{C}[\operatorname{Gal}(H/K)]$ expressing $\Theta^{(n)}_{S_{\infty}}(0)$ as essentially a linear combination of logarithms of special values $\{\Psi(z_{\sigma})\}$, where $\Psi\colon \mathbb{H}^{n} \rightarrow \mathbb{R}$ is a Hilbert modular function for a congruence subgroup of $SL_{2}(\mathcal{O}_{F})$ and $\{z_{\sigma}: \sigma \in \operatorname{Gal}(H/K)\}$ are CM points on a universal Hilbert modular variety. We apply this result to express the relative class number $h_{H}/h_{K}$ as a rational multiple of the determinant of an $(h_{K}-1) \times (h_{K}-1)$ matrix of logarithms of ratios of special values $\Psi(z_{\sigma})$, thus giving rise to candidates for higher analogs of elliptic units. Finally, we obtain a product formula for $\Psi(z_{\sigma})$ in terms of exponentials of special values of $L$-functions.

Keywords:Artin $L$-function, CM point, Hilbert modular function, Rubin-Stark conjecture
Categories:11R42, 11F30

21. CJM 2009 (vol 61 pp. 1073)

Griffiths, Ross; Lescop, Mikaël
On the $2$-Rank of the Hilbert Kernel of Number Fields
Let $E/F$ be a quadratic extension of number fields. In this paper, we show that the genus formula for Hilbert kernels, proved by M. Kolster and A. Movahhedi, gives the $2$-rank of the Hilbert kernel of $E$ provided that the $2$-primary Hilbert kernel of $F$ is trivial. However, since the original genus formula is not explicit enough in a very particular case, we first develop a refinement of this formula in order to employ it in the calculation of the $2$-rank of $E$ whenever $F$ is totally real with trivial $2$-primary Hilbert kernel. Finally, we apply our results to quadratic, bi-quadratic, and tri-quadratic fields which include a complete $2$-rank formula for the family of fields $\Q(\sqrt{2},\sqrt{\delta})$ where $\delta$ is a squarefree integer.

Categories:11R70, 19F15

22. CJM 2009 (vol 61 pp. 583)

Hajir, Farshid
Algebraic Properties of a Family of Generalized Laguerre Polynomials
We study the algebraic properties of Generalized Laguerre Polynomials for negative integral values of the parameter. For integers $r,n\geq 0$, we conjecture that $L_n^{(-1-n-r)}(x) = \sum_{j=0}^n \binom{n-j+r}{n-j}x^j/j!$ is a $\Q$-irreducible polynomial whose Galois group contains the alternating group on $n$ letters. That this is so for $r=n$ was conjectured in the 1950's by Grosswald and proven recently by Filaseta and Trifonov. It follows from recent work of Hajir and Wong that the conjecture is true when $r$ is large with respect to $n\geq 5$. Here we verify it in three situations: i) when $n$ is large with respect to $r$, ii) when $r \leq 8$, and iii) when $n\leq 4$. The main tool is the theory of $p$-adic Newton Polygons.

Categories:11R09, 05E35

23. CJM 2009 (vol 61 pp. 518)

Belliard, Jean-Robert
Global Units Modulo Circular Units: Descent Without Iwasawa's Main Conjecture
Iwasawa's classical asymptotical formula relates the orders of the $p$-parts $X_n$ of the ideal class groups along a $\mathbb{Z}_p$-extension $F_\infty/F$ of a number field $F$ to Iwasawa structural invariants $\la$ and $\mu$ attached to the inverse limit $X_\infty=\varprojlim X_n$. It relies on ``good" descent properties satisfied by $X_n$. If $F$ is abelian and $F_\infty$ is cyclotomic, it is known that the $p$-parts of the orders of the global units modulo circular units $U_n/C_n$ are asymptotically equivalent to the $p$-parts of the ideal class numbers. This suggests that these quotients $U_n/C_n$, so to speak unit class groups, also satisfy good descent properties. We show this directly, \emph{i.e.,} without using Iwasawa's Main Conjecture.

Category:11R23

24. CJM 2009 (vol 61 pp. 264)

Bell, J. P.; Hare, K. G.
On $\BbZ$-Modules of Algebraic Integers
Let $q$ be an algebraic integer of degree $d \geq 2$. Consider the rank of the multiplicative subgroup of $\BbC^*$ generated by the conjugates of $q$. We say $q$ is of {\em full rank} if either the rank is $d-1$ and $q$ has norm $\pm 1$, or the rank is $d$. In this paper we study some properties of $\BbZ[q]$ where $q$ is an algebraic integer of full rank. The special cases of when $q$ is a Pisot number and when $q$ is a Pisot-cyclotomic number are also studied. There are four main results. \begin{compactenum}[\rm(1)] \item If $q$ is an algebraic integer of full rank and $n$ is a fixed positive integer, then there are only finitely many $m$ such that $\disc\left(\BbZ[q^m]\right)=\disc\left(\BbZ[q^n]\right)$. \item If $q$ and $r$ are algebraic integers of degree $d$ of full rank and $\BbZ[q^n] = \BbZ[r^n]$ for infinitely many $n$, then either $q = \omega r'$ or $q={\rm Norm}(r)^{2/d}\omega/r'$, where $r'$ is some conjugate of $r$ and $\omega$ is some root of unity. \item Let $r$ be an algebraic integer of degree at most $3$. Then there are at most $40$ Pisot numbers $q$ such that $\BbZ[q] = \BbZ[r]$. \item There are only finitely many Pisot-cyclotomic numbers of any fixed order. \end{compactenum}

Keywords:algebraic integers, Pisot numbers, full rank, discriminant
Categories:11R04, 11R06

25. CJM 2009 (vol 61 pp. 3)

Behrend, Kai; Dhillon, Ajneet
Connected Components of Moduli Stacks of Torsors via Tamagawa Numbers
Let $X$ be a smooth projective geometrically connected curve over a finite field with function field $K$. Let $\G$ be a connected semisimple group scheme over $X$. Under certain hypotheses we prove the equality of two numbers associated with $\G$. The first is an arithmetic invariant, its Tamagawa number. The second is a geometric invariant, the number of connected components of the moduli stack of $\G$-torsors on $X$. Our results are most useful for studying connected components as much is known about Tamagawa numbers.

Categories:11E, 11R, 14D, 14H
Page
   1 2 3    

© Canadian Mathematical Society, 2017 : https://cms.math.ca/